Skip to main content
Log in

Laser Powder Bed Fusion of Ti15Mo Fused Tracks and Layers

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A thorough review of the literature reveals that the production of the Ti15Mo alloy via laser powder bed fusion (LPBF) without unmelted Mo powder particles has been unsuccessful. The current research aims to produce the Ti15Mo alloy without unmelted Mo powder particles by using Mo powder particle size of 1.0 µm. Sintered tracks were produced over a wide range of laser powers and scanning speeds. The combination of the laser powers and scanning speeds produced different sintered track geometries and different penetration profiles. Optimum process parameters were determined from the top view and cross-sectional analysis of experimental specimens and used to produce double layers for further investigation. From the top view and cross-sectional analysis of the layers, it was observed that all the Mo powder particles melted completely with only random pockets of Mo concentration. The unique scanning strategy employed improved the homogeneity and surface quality of the alloy. The current experiment has opened a window of possibility to manufacture the Ti15Mo alloy without unmelted Mo powder particles at process parameters of 150 W, 1.4 m/s and 200 W, 1.0 m/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings can be shared on request.

References

  1. V.R. Jablokov, M.J. Nutt, M.E. Richelsoph, and H.L. Freese, J. ASTM Int. 2, 491 https://doi.org/10.1520/jai13033 (2005).

    Article  Google Scholar 

  2. T.C. Dzogbewu, and W.B. du Preez, Metals 11, 12 https://doi.org/10.3390/met11030453 (2021).

    Article  Google Scholar 

  3. M. Niinomi, D. Kuroda, K.I. Fukunaga, M. Morinaga, Y. Kato, T. Yashiro, and A.M. Suzuki, Mater. Sci. Eng. A 263, 193 https://doi.org/10.1016/S0921-5093(98)01167-8 (1999).

    Article  Google Scholar 

  4. C.N. Elias, J.H.C. Lima, R. Valiev, and M.A. Meyers, JOM 60, 46 https://doi.org/10.1007/s11837-008-0031-1 (2008).

    Article  Google Scholar 

  5. T. C. Dzogbewu and W. B. Du Preez, Metals (Basel), (12)6, 950(2022). doi: https://doi.org/10.3390/met12060950

  6. M.T. Mohammed, Int. J. Mater. Metall. Eng. 8, 822 https://doi.org/10.5281/ZENODO.1094481 (2014).

    Article  Google Scholar 

  7. J.A. Disegi, M.D. Roach, R.D. McMillan, and B.T. Shultzabarger, J. Biomed. Mater. Res. - Part B Appl. Biomater. 105, 2010 https://doi.org/10.1002/jbm.b.33679 (2017).

    Article  Google Scholar 

  8. M.B. Nasab, M.R. Hassan, and B. Sahari, Trends in Biomater. Artificial Organs 24, 69 (2010).

    Google Scholar 

  9. M.L. Lourenço, G.C. Cardoso, K.D.S.J. Sousa, T.A.G. Donato, F.M.L. Pontes, and C.R. Grandini, Sci. Rep. 10, 1 https://doi.org/10.1038/s41598-020-62865-4 (2020).

    Article  Google Scholar 

  10. Data Sheet ATI 15Mo Titanium Alloy. ATI 15Mo TM Titanium Alloy ATI 15Mo TM Titanium Alloy. ATI 2, 2–5 (2014). Available: www.ATImetals.com

  11. J.R.S. Martins, R.A. Nogueira, R.O.D. Araújo, T.A.G. Donato, V.E. Arana-Chavez, A.P.R.A. Claro, J.C.S. Moraes, M.A.R. Buzalaf, and C.R.J. Grandini, Mater. Res. 14, 107 https://doi.org/10.1590/S1516-14392011005000013 (2011).

    Article  Google Scholar 

  12. W.F. Ho, C.P. Ju, J.H. Chern Lin, Biomaterials 20, 2115 (1999). doi: https://doi.org/10.1016/S0142-9612(99)00114-3.

  13. Y.Y. Chen, L.J. Xu, Z.G. Liu, F.T. Kong, and Z.Y. Chen, Trans. Nonferrous Met. Soc. 16, s824–s828 https://doi.org/10.1016/S1003-6326(06)60308-7 (2006).

    Article  Google Scholar 

  14. S. Kumar, and T.S.N.S. Narayanan, J. Dent. 36, 500 https://doi.org/10.1016/j.jdent.2008.03.007 (2008).

    Article  Google Scholar 

  15. B.S. Sung, T.E. Park, and Y.H. Yun, Adv. Mater. Sci. Eng. https://doi.org/10.1155/2015/872730 (2015).

    Article  Google Scholar 

  16. L.B. Zhang, K.Z. Wang, L.J. Xu, S.L. Xiao, and Y.Y. Chen, Trans. Nonferrous Met. Soc. 25, 2214 https://doi.org/10.1016/S1003-6326(15)63834-1 (2015).

    Article  Google Scholar 

  17. A. Almeida, D. Gupta, and R. Vilar, in LAT 2010: International Conference on Lasers, Applications, and Technologies, 7994, 79941U (2010). doi: https://doi.org/10.1117/12.881279.

  18. J. Diseg, J. Second Edition. Implant Materials. Wrought Titanium 15% Molybdenum. - PDF Free Download. https://docplayer.net/27772474-Second-edition-implant-materials-wrought-titanium-15-molybdenum.html.

  19. ASTM International. F2066–08: Standard specification for wrought titanium-15 molybdenum alloy for surgical implant applications (UNS R58150). Astm 1–5 (2008).

  20. T. C. Dzogbewu, S. K. Fianko, N. Amoah, S. Afrifa Jnr, and D. de Beer, (2022). Heliyon, 8(11). 11852 doi: https://doi.org/10.1016/j.heliyon.2022.e11852.

  21. T.C. Dzogbewu, N. Amoah, S.K. Fianko, S. Afrifa, and D. de Beer, Manuf. Rev. 9, 1 https://doi.org/10.1016/j.heliyon.2022.e11852 (2022).

    Article  Google Scholar 

  22. T.C. Dzogbewu, Results Eng. 7, 100155 https://doi.org/10.1051/mfreview/2021032 (2020).

    Article  Google Scholar 

  23. B. Vrancken, L. Thijs, J.P. Kruth, and J. Van Humbeeck, Acta Mater. 68, 150 https://doi.org/10.1016/j.actamat.2014.01.018 (2014).

    Article  Google Scholar 

  24. F. Huber, M. Rasch, and M. Schmidt, Metals (Basel). 11, 1 https://doi.org/10.3390/met11020336 (2021).

    Article  Google Scholar 

  25. Dzogbewu, T. C., Yadroitsev, I., Krakhmalev, P., Yadroitsava, I., and du Plessis, Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2017 75–96 (2020).

  26. I. Yadroitsev, P. Krakhmalev, and I. Yadroitsava, Addit. Manuf. 7, 45 (2015).

    Google Scholar 

  27. Struers Company. Metallographic products, knowledge and service | Struers.com. https://www.struers.com/en.

  28. W.E. King, D.B. Holly, M.C. Victor, F.G. Gilbert, W.G. John, E.H. Douglas, K. Chandrika, and M.R. Alexander, J. Mater. Process. Technol. 214, 2915 https://doi.org/10.1016/j.jmatprotec.2014.06.005 (2014).

    Article  Google Scholar 

  29. L. Rayleigh, XIX London, Edinburgh Dublin Philos. Mag. J. Sci. 34, 177 https://doi.org/10.1080/14786449208620304 (1892).

    Article  Google Scholar 

  30. P. Fischer, V. Romano, H.P. Weber, N.P. Karapatis, E. Boillat, and R. Glardon, Acta Mater. 51, 1651 https://doi.org/10.1016/S1359-6454(02)00567-0 (2003).

    Article  Google Scholar 

  31. W. Liu, and J.N. Dupont, Acta Mater. 53, 1545 https://doi.org/10.1016/j.actamat.2004.12.007 (2005).

    Article  Google Scholar 

  32. B. Li, L. Zhang, Y. Xu, Z. Liu, B. Qian, F. Xuan, and B. Li, Powder Technol. 360, 509 https://doi.org/10.1016/j.powtec.2019.10.068 (2020).

    Article  Google Scholar 

  33. C. Körner, E. Attar, and P. Heinl, J. Mater. Process. Technol. 211, 978 https://doi.org/10.1016/j.jmatprotec.2010.12.016 (2011).

    Article  Google Scholar 

  34. S. Das, Adv. Eng. Mater. 5, 701 https://doi.org/10.1002/adem.200310099 (2003).

    Article  Google Scholar 

  35. N.T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft, and N.M. Everitt, Mater Sci. Eng. A 667, 139 https://doi.org/10.1016/j.msea.2016.04.092 (2016).

    Article  Google Scholar 

  36. V.P. Matilainen, H. Piili, A. Salminen, and O. Nyrhilä, Phys. Procedia 78, 377 https://doi.org/10.1016/j.phpro.2015.11.052 (2015).

    Article  Google Scholar 

  37. S. Kou, Weld. J. 90, (2011).

  38. I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, S. Johansson, and I. Smurov, J. Mater. Process. Technol. 213, 606 https://doi.org/10.1016/j.jmatprotec.2012.11.014 (2013).

    Article  Google Scholar 

  39. T.C. Dzogbewu, and D. de Beer, J. Manuf. Mater. Process 7(1), 15 https://doi.org/10.3390/JMMP7010015 (2023).

    Article  Google Scholar 

  40. S.A. Khairallah, A.T. Anderson, A. Rubenchik, and W.E. King, Acta Mater. 108, 36 https://doi.org/10.1016/j.actamat.2016.02.014 (2016).

    Article  Google Scholar 

  41. J. Yang, J. Han, H. Yu, J. Yin, M. Gao, Z. Wang, and X. Zeng, Mater. Des. 110, 558 https://doi.org/10.1016/j.matdes.2016.08.036 (2016).

    Article  Google Scholar 

  42. D.B. Hann, J. Iammi, and J.A. Folkes, J. Phys. D. Appl. Phys. 44, 445401 https://doi.org/10.1088/0022-3727/44/44/445401 (2011).

    Article  Google Scholar 

  43. D. Bäuerle, Laser Process. Chem. https://doi.org/10.1007/978-3-642-17613-5 (2011).

    Article  Google Scholar 

  44. R. Rai, J.W. Elmer, T.A. Palmer, and T. Debroy, J. Phys. D. Appl. Phys. 40, 5753 https://doi.org/10.1088/0022-3727/40/18/037 (2007).

    Article  Google Scholar 

  45. AZoM. Titanium Alloys - Physical Properties. AZO Materials 1–15 https://www.azom.com/article.aspx?ArticleID=1341 (2002).

  46. M. Mohr, R. Wunderlich, and H. J. Fecht, Miner. Met. Mater, 357(2022) doi: https://doi.org/10.1007/978-3-030-89784-0_16/COVER.

  47. Palik, E. D. Handbook of optical constants of solids. Handbook of Optical Constants of Solids vol. 1 (Elsevier, 2012). doi: https://doi.org/10.1016/C2009-0-20920-2.

  48. T.C. Dzogbewu, J. Met. Mater. Miner. 31, 62 https://doi.org/10.55713/jmmm.v31i2.1051 (2021).

    Article  Google Scholar 

  49. J.Q. Xu, L.Y. Chen, H. Choi, and X.C. Li, J. Phys. Condens. Matter. https://doi.org/10.1088/0953-8984/24/25/255304 (2012).

    Article  Google Scholar 

  50. L. Ramosena, T.C. Dzogbewu, and W. Preez, Materials (Basel). 15(22), 1 https://doi.org/10.3390/MA15228193 (2022).

    Article  Google Scholar 

  51. M. Losertová, and V. Kubeš, Mater. Sci. Eng. https://doi.org/10.1088/1757-899X/266/1/012009 (2017).

    Article  Google Scholar 

  52. L. Hadji, Scr. Mater. 48, 665 https://doi.org/10.1016/S1359-6462(02)00562-6 (2003).

    Article  Google Scholar 

  53. T.C. Dzogbewu, J. Met. Mater. Miner. 30, 68 https://doi.org/10.14456/jmmm.2020.53 (2020).

    Article  Google Scholar 

  54. W. Liu, and J.N. DuPont, Acta Mater. 52, 4833 https://doi.org/10.1016/j.actamat.2004.06.041 (2004).

    Article  Google Scholar 

  55. K. Arafune, and A. Hirata, J. Cryst. Growth 197, 811 https://doi.org/10.1016/S0022-0248(98)01071-9 (1999).

    Article  Google Scholar 

  56. T.C. Dzogbewu, and W.B. Du Preez, Manuf. Rev. 9, 23 https://doi.org/10.1051/mfreview/2022022 (2022).

    Article  Google Scholar 

  57. D. Bergström, J. Powell, and A.F.H. Kaplan, J. Appl. Phys. https://doi.org/10.1063/1.2738417 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This work is based on research supported by the South African Research Chairs Initiative of the Department of Science and Technology, and the National Research Foundation of South Africa (Grant No. 97994), the Collaborative Program in Additive Manufacturing (Contract No. CSIR-NLC-CPAM-21-MOA-CUT-01), the Manufacturing, Engineering and related Services Sector (merSETA) and Central University of Technology (CUT) MoA: Funding of the Chair in Innovation and Commercialisation of Additive Manufacturing (CICAM), 21 December 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thywill Cephas Dzogbewu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 80 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzogbewu, T.C., de Beer, D.J. & du Preez, W.B. Laser Powder Bed Fusion of Ti15Mo Fused Tracks and Layers. JOM 75, 3183–3196 (2023). https://doi.org/10.1007/s11837-023-05842-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05842-2

Navigation