Skip to main content
Log in

A Mathematical Model for Straight-Grate Iron Oxide Pellet Induration Furnace: Formulation, Plant Scale Validation, Implementation and Control

  • Instrumentation for Process Modeling and Validation
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this work, a mathematical model for the straight-grate pellet induration furnace is presented. The induration furnace is an equipment used for the efficient heat and mass transfer between the pellet bed and the flowing gas. The model includes different physicochemical phenomenon like gas-solid heat and mass transfer, drying and condensation of free surface moisture, combustion of carbon, calcination of limestone and kinetics of loss of ignition (LOI) removal from hydrated iron ore. The model is validated with the experimental and numerical data available in the literature. For the first time, an extended validation of the model against the plant scale ThermoCar (T-CAR) test is also presented. The developed model is implemented at AM/NS India pellet plants including the model assisted control to the online furnace operation. The effect of change in different furnace operating parameters on the thermal and chemical state of the pellet bed inside the furnace can be easily evaluated from the model results. The model can be used as an offline tool for optimizing the furnace parameters, increasing plant productivity, improving fired pellet properties, pilot run of new product mix, operator training purpose and as an online visualization tool for the better operational control and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\(A_\textrm{s}\) :

Specific contact surface area (\(\hbox {m}^2/\hbox {m}^3\)) (\(A_\textrm{s}=6(1-\varepsilon _\textrm{b})/\phi d_\textrm{p}\))

\(C_{j}\) :

Concentration of the gas species j (\(\hbox {kmol}/\hbox {m}^3\))

\(C_{j}^{\textrm{e}}\) :

Equilibrium concentration the gas species j (\(\hbox {kmol}/\hbox {m}^3\))

\(C_{\textrm{pg}}\) :

Specific heat of gas (\(\hbox {J/kg}{\,} \hbox {K}\))

\(C_{\textrm{ps}}\) :

Specific heat of solid (\(\hbox {J/kg}{\,} \hbox {K}\))

\(D_{j}\) :

Diffusivity of the gas species j (\(\hbox {m}^2/\hbox {s}\))

\(D_{j}^{\textrm{eff}}\) :

Effective diffusivity of the gas species j (\(\hbox {m}^2/\hbox {s}\))

\(d_\textrm{p}\) :

Mean pellet diameter (m)

G :

Superficial gas flow rate (\(\hbox {kg}/\hbox {m}^2{\,} \hbox {s}\))

\(\Delta H_j\) :

Enthalpy of reaction j (J/kg)

\(h_{\textrm{gs}}\) :

Effective heat transfer co-efficient (\(\hbox {J/m}^2{\,} s{\,} \hbox {K}\))

\(K_{\textrm{H}_{2}\textrm{O}}\) :

Water mass transfer co-efficient (m/s)

\((k_{\textrm{ch}})_\textrm{c}\) :

Chemical reaction rate constant for coke combustion (m/s)

\((k_{\textrm{ch}})_\textrm{l}\) :

Chemical reaction rate constant for limestone calcination (m/s)

\(k_{\textrm{m}{\left( j\right) }}\) :

Mass transfer co-efficient of the gas species j (m/s)

\(M_{j}\) :

Molecular weight of the solid-bed species j (\(\hbox {kg}/\hbox {mol}\))

Nu :

Nusselt number (\(Nu=h_{\textrm{gs}}d_\textrm{p}/\lambda _{\textrm{g}}\))

\(P'\) :

Total pressure (Pa)

p :

Absolute gas pressure (Pa)

\(p_{\textrm{H}_{2}\textrm{O}}\) :

Water vapour partial pressure (Pa)

Pr :

Prandtl number (\(Pr=\mu _\textrm{g} \hbox {C}_{\textrm{pg}}/\lambda _{\textrm{g}}\))

\(p_{\textrm{v}_{\textrm{sat}}}\) :

Water vapour saturation pressure (Pa)

\(R_\textrm{C}\) :

Rate of coke combustion (\(\hbox {kg}/\hbox {m}^3{\,} \hbox {s}\))

Re :

Reynolds number (\(Re=Gd_\textrm{p}/\mu _{\textrm{g}}\))

\(R_{\textrm{CaCO}_3}\) :

Rate of limestone calcination (\(\hbox {kg}/\hbox {m}^3{\,} \hbox {s}\))

\(R_{\textrm{H}_{2}\textrm{O}}\) :

Rate of moisture drying/condensation (\(\hbox {kg}/\hbox {m}^3{\,} \hbox {s}\))

\(R_{\textrm{LOI}}\) :

Rate of LOI removal (\(\hbox {kg}/\hbox {m}^3{\,} \hbox {s}\))

\(R_\textrm{u}\) :

Universal gas constant (\(\hbox {J}/\hbox {mol}{\,} \hbox {K}\))

\(r_0\) :

Mean particle radius (m)

\(r_\textrm{c}\) :

Unreacted coke particle core radius (m)

\(r_\textrm{l}\) :

Unreacted limestone particle core radius (m)

Sc :

Schmidt number (\(Sc=\mu _{\textrm{g}}/\rho _{\textrm{g}}D_i\))

Sh :

Sherwood number (\(Sh=2+0.6Sc^{1/3}(Re/\epsilon _\textrm{b})^{1/2}\))

\(T_\textrm{g}\) :

Temperature of gas (K)

\(T_\textrm{s}\) :

Temperature of pellet (K)

\(T_{\textrm{rec}}\) :

Re-circulation gas temperature (K)

t :

Time (s)

\(t_{\textrm{stop}}\) :

Time corresponding to end of furnace length (s)

\(W_{j}\) :

Mass fraction of flowing gas species j (\(\hbox {kg}/\hbox {kg}\))

\(W_{\textrm{rec}}\) :

Mass fraction of recirculating gas species (\(\hbox {kg}/\hbox {kg}\))

\(Y_{\textrm{cr}}\) :

Critical moisture content in solid-bed (\(\hbox {kg}/\hbox {kg}\))

\(Y_{\textrm{H}_{2}\textrm{O}}\) :

Mass fraction of moisture content in solid-bed (kg/kg)

\(Y_j\) :

Mass fraction of solid-bed species j (kg/kg)

y :

Pellet bed height direction (m)

\(\alpha \) :

Reaction heat factor

\(\alpha _{\textrm{LOI}}\) :

LOI fraction conversion

\(\beta \) :

Factor of drying/condensation kinetics

\(\varepsilon _\textrm{b}\) :

Bed void fraction

\(\mu _\textrm{g}\) :

Viscosity of gas (\(\hbox {kg}/\hbox {m}{\,} \hbox {s}\))

\(\nu _j\) :

Stoichiometric coefficient of solid-bed reactant j

\(\rho _\textrm{g}\) :

Density of gas (\(\hbox {kg}/\hbox {m}^3\))

\(\rho _\textrm{s}\) :

Bulk density of solid-bed (\(\hbox {kg}/\hbox {m}^3\))

\(\lambda _{\textrm{g}}\) :

Thermal conductivity of gas (\(\hbox {J/m}{\,} \hbox {s}{\,} \hbox {K}\))

\(\lambda _{\textrm{s}}\) :

Thermal conductivity of solid (\(\hbox {J/m}{\,} \hbox {s}{\,} \hbox {K}\))

\(\phi \) :

Sphericity of pellet

References

  1. S.L. de Moraes, J.R.B. de Lima, and T.R. Ribeiro, “Iron ore pelletizing process: An overview,” Iron Ores and Iron Oxide Materials (2018)

  2. P. Satyananda, A. Kumar, and V. Rayasam, J. Min. Metall. Min. 53(1), 31 (2017)

    Article  Google Scholar 

  3. N. Hasenak, P. Lebelle, and J. Kooy, “Mathematical Models in Iron and Steelmaking,” The Metals Society, London, vol. 6 (1975)

  4. J.H. Voskamp and J. Brasz, Meas. Control 8(1), 23–32 (1975). https://doi.org/10.1177/002029407500800105

  5. J. Thurlby, R. Batterham, and R. Turner, Int. J. Miner. Process. 6(1), 43 (1979)

  6. K. Küçükada, J. Thibault, D. Hodouin, G. Paquet, and S. Caron, Can. Metall. Q. 33(1), 1 (1994). https://doi.org/10.1179/cmq.1994.33.1.1

    Article  Google Scholar 

  7. S. Majumder, P.V. Natekar, and V. Runkana, Comput. Chem. Eng. 33(6), 1141 (2009)

    Article  Google Scholar 

  8. S. Sadrnezhaad, A. Ferdowsi, and H. Payab, Comput. Mater. Sci. 44(2), 296 (2008)

    Article  Google Scholar 

  9. M. Barati, Int. J. Miner. Process. 89(1), 30 (2008)

    Article  Google Scholar 

  10. F. de Paula Vitoretti, and J. A. de Castro, J. Mater. Res. Technol., 2(4), 315–322 (2013)

  11. H. Amani, E. Alamdari, H. Ale Ebrahim, A. Estupinan, and B. Peters, J. Therm. Anal. Calorim., 147(3), 2293 (2022) https://doi.org/10.1007/s10973-020-10532-1

  12. D. Englund and R. Davis, Min. Metall. Explor. 31(4), 200 (2014). https://doi.org/10.1007/BF03402471

    Article  Google Scholar 

  13. M.M. Carvalho, D.G. Faria, M. García Pérez, M. Cardoso, and E.K. Vakkilainen, “Review on mathematical models for travelling-grate iron oxide pellet induration furnaces,” Energy Procedia, vol. 120, pp. 588–595 (2017) iNFUB - 11th European Conference on Industrial Furnaces and Boilers, INFUB-11. https://www.sciencedirect.com/science/article/pii/S1876610217327509

  14. T. Thorat, V. N. Nurni, M. Basavaraja, M. Singhai, S. Hazra, and A. Mogale, “Modelling of heat transfer in a straight grate pellet induration reactor complemented with plant scale experiments,” Mineral Processing and Extractive Metallurgy, pp. 1–7 (2021). https://doi.org/10.1080/25726641.2021.1984828

  15. F. Zhou, Y. Li, Y. Sun, and B. Li, JOM 72(3), 1406 (2020). https://doi.org/10.1007/s11837-019-03981-z

    Article  Google Scholar 

  16. F. Zhou, C. Chen, Z. Pu, M. Zhang, Z. Wu, X. Zhang, and B. Li, Min. Metall. Explor., 38(2),1239 (2021). https://doi.org/10.1007/s42461-021-00398-8

  17. M. Cross and P. Blot, Metall. Mater. Trans. B 30(4), 803 (1999). https://doi.org/10.1007/s11663-999-0042-5

  18. A. Hamidi and H. Payab, Int. J. Eng. 16(3), 265 (2003)

    Google Scholar 

  19. D. Pomerleau, D. Hodouin, and E. Poulin, Can. Metall. Q. 44(4), 571 (2005). https://doi.org/10.1179/cmq.2005.44.4.571

    Article  Google Scholar 

  20. S. Patra, A. Pattanaik, A.S. Venkatesh, and R. Venugopal, J. Geol. Soc. India 93(4), 443 (2019). https://doi.org/10.1007/s12594-019-1199-4

    Article  Google Scholar 

  21. X. Hui Fan, G. Ming Yang, X. Ling Chen, L. Gao, X. Xian Huang, and X. Li, Comput. Chem. Eng., 79, 80 (2015)

  22. J. Wynnyckyj and R. Batterham, “Iron ore sintering and pellet induration processes,” The 4th international symposium on agglomeration (Toronto, Canada, 1985), pp. 957–994

  23. A. Hoffmann and H. Finkers, Powder Technol. 82(2), 197 (1995)

    Article  Google Scholar 

  24. H. Ahn and S. Choi, Comput. Chem. Eng. 97, 13 (2017)

    Article  Google Scholar 

  25. Y. Seshadri and R. O. da Silva Pereira, Trans. Iron Steel Inst. Jpn., 26(7), 604 (1986). https://doi.org/10.2355/isijinternational1966.26.604

  26. S. Ergun, Fluid flow through packed columns. Chem. Eng. Prog. 48(2), 89 (1952)

    Google Scholar 

  27. E.J. Osinski, P.V. Barr, and J.K. Brimacombe, Can. J. Chem. Eng. 67(5), 722 (1989). https://doi.org/10.1002/cjce.5450670503

    Article  Google Scholar 

  28. F. Patisson, J. Bellot, and D. Ablitzer, Metall. Trans. B 21(1), 37 (1990). https://doi.org/10.1007/BF02658114

    Article  Google Scholar 

  29. G. Wang, Z. Wen, G. Lou, R. Dou, X. Li, X. Liu, and F. Su, Int. J. Heat Mass Transf. 97, 964 (2016)

    Article  Google Scholar 

  30. O. Levenspiel, Chemical Reaction Engineering (Wiley, Hoboken, 1999)

    Google Scholar 

  31. R. Young, Ironmak. Steelmak. 1, 321–328 (1977)

    Google Scholar 

  32. P. Beuria, S. Biswal, B. Mishra, and G. Roy, Int. J. Min. Sci. Technol. 27(6), 1031 (2017)

    Article  Google Scholar 

  33. D. Walter, G. Buxbaum, and W. Laqua, J. Therm. Anal. Calorim. 63(3), 733 (2001). https://doi.org/10.1023/A:1010187921227

    Article  Google Scholar 

  34. C. Goss, Mineral. Mag. 51(361), 437 (1987)

    Article  Google Scholar 

  35. P. Beuria, S. Biswal, B. Mishra, and G. Roy, Int. J. Miner. Metall. Mater. 24(3), 229 (2017). https://doi.org/10.1007/s12613-017-1400-y

  36. S.V. Patankar, Numerical Heat Transfer and Fluid Flow (CRC Press, Boston, 2018)

    Book  MATH  Google Scholar 

  37. H. Zheng, J. Schenk, D. Spreitzer, T. Wolfinger, and O. Daghagheleh, Steel Res. Int. 92(8), 2000687 (2021). https://doi.org/10.1002/srin.202000687

    Article  Google Scholar 

  38. I. Dash, C. Carter, and E. Rose, “Heat wave propagation through a sinter bed: a critical appraisal of mathematical representations,” in SIMAC 74: Proceedings of the Conference on Measurement and Control in the Steel Industry, p. 8 (1974)

Download references

Acknowledgements

The authors would like to thank the management of Arcelormittal Nippon Steel India Limited (AM/NS India) for granting permission of the present model development. The authors also want to show their gratitude to AM/NS India Paradeep and Visakhapatnam pellet plants operation and instrumentation team for conducting plant scale ThermoCar testing and supporting the model implementation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyananda Patra.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 2455 KB)

Appendix: Auxiliary Equations Used in the Present Model

Appendix: Auxiliary Equations Used in the Present Model

Some correlations from the literature were used in the present model formulation to calculate temperature dependent thermodynamic and transport properties of gas and solid phases.

$$\begin{aligned} C_{\textrm{pg}}&=881+0.31T_\textrm{g}-7.98\times 10^{-5}T_\textrm{g}^2 \text {(Dash et al. [38])}{} & {} \\ C_{\textrm{ps}}&= {\left\{ \begin{array}{ll}341.6+1.324T_{\textrm{s}}-4.032\times 10^{-4}T_{\textrm{s}}^{2} &{}; T_\textrm{s}\le 950.15\\ 1111&{};950.15<T_\textrm{s}\le 1050.15\\ 999+0.0461T_\textrm{s}&{}; T_\textrm{s}>1050.15 \text {(Thurlby et al. [5])} \end{array}\right. }{} & {} \\ \hbox {CO}_{2}^{\textrm{e}}&=\frac{12.187}{T_{\textrm{s}}}\exp \left( 7.35-\frac{5211}{T_{\textrm{s}}}\right) \text {(Majumder et al. [7])}{} & {} \\ D_{\textrm{CO}_2}&=7.166\times 10^{-10}T_\textrm{g}^{1.75} \text {(Majumder et al. [7])}{} & {} \\ D_{\textrm{O}_2}&=\frac{9.45\times 10^{-5}T_\textrm{g}^{1.75}}{P'} \text {(Englund et al. [12])}{} & {} \\ \mu _\textrm{g}&=1.72\times 10^{-5}\left( \frac{T_\textrm{g}}{273.15}\right) ^{1.5}\left( \frac{386.15}{113+T_\textrm{g}}\right) \text {(Dash et al.[38])}{} & {} \\ \lambda _{\textrm{g}}&=\frac{0.00211T_\textrm{g}^{1.5}}{123.6+T_\textrm{g}} \text {(Kucukada et al. [6])}{} & {} \\ p_{v_{\textrm{sat}}}&=\exp \left( 25.541-\frac{5211}{T_\textrm{s}}\right) \text {(Patisson et al. [28])}{} & {} \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dave, S., Patra, S., Bapat, Y. et al. A Mathematical Model for Straight-Grate Iron Oxide Pellet Induration Furnace: Formulation, Plant Scale Validation, Implementation and Control. JOM 75, 2406–2420 (2023). https://doi.org/10.1007/s11837-023-05819-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05819-1

Navigation