Skip to main content
Log in

Modeling of Dynamic Recrystallization Kinetics in Ce Containing Mg Alloys

  • Influence of Processing on Microstructure and Properties of Mg Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

ZK60 alloys are known to have high mechanical strength relative to other Mg alloys. Composition variations in precipitate and solute content of ZK60 Mg alloys, with Zn variations and Ce substitutions, allow for the formation of higher melting point precipitates and impact dynamic recrystallization (DRX) behavior, microstructure, and mechanical properties. Creating constitutive models of the DRX process in various Mg alloys can help guide processing to efficiently create products with desirable microstructures. In this work, hot compression testing at various strain rates and temperatures was carried out. It has been shown that greater peak true stresses are required for DRX in alloys processed at lower temperatures and higher strain rates. Moreover, increases in Zn and Ce content increase the stress that the microstructure can absorb before DRX starts. Finally, electron backscattered diffraction mapping shows how texture is decreased by DRX compared to the as-received conditions and how DRX was more advanced for low Zr and low strain rate conditions, consistently with the developed model. Based on these experimental results, a constitutive model to quantify the relationship between the Zener–Hollomon parameter and peak stress was developed. The model was shown to reflect the experimentally obtained results accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.M. Avedesian, and H. Baker, ASM specialty handbook: magnesium and magnesium alloys (ASM International, 1999).

    Google Scholar 

  2. A. Hadadzadeh, S.K. Shaha, M.A. Wells, H. Jahed, and B.W. Williams, Magnesium Technology 2017 (Springer, 2017), pp513–519.

    Book  Google Scholar 

  3. Z. Zhu, and A.D. Pelton, J. Alloy. Compd. 652, 426 (2015).

    Article  Google Scholar 

  4. H. Yu, Y.M. Kim, B.S. You, H.S. Yu, and S.H. Park, Mater. Sci. Eng. A 559, 798 (2013).

    Article  Google Scholar 

  5. E. Silva, R.H. Buzolin, F. Marques, F. Soldera, U. Alfaro, and H.C. Pinto, J. Magnes. Alloys 9, 995 (2021).

    Article  Google Scholar 

  6. S.R. Agnew, and Ö. Duygulu, Int. J. Plast. 21, 1161 (2005).

    Article  Google Scholar 

  7. R. Verma, L.G. Hector, P.E. Krajewski, and E.M. Taleff, JOM 61, 29 (2009).

    Article  Google Scholar 

  8. T. Sakai, and J.J. Jonas, Acta Metall. 32, 189 (1984).

    Article  Google Scholar 

  9. S. Fatemi, and H. Paul, Mater. Chem. Phys. 257, 123726 (2021).

    Article  Google Scholar 

  10. A. Galiyev, R. Kaibyshev, and G. Gottstein, Acta Mater. 49, 1199 (2001).

    Article  Google Scholar 

  11. J. Dong, J. Sun, L. Jin, Z. Zhang, and W. Ding, in Proceedings of 135h International Conference on Fracture 1 (2013)

  12. L. Fu, Q. Le, W. Hu, J. Zhang, and J. Wang, J. Market. Res. 9, 6834 (2020).

    Google Scholar 

  13. P. Xu, J. Yu, and Z. Zhang, Materials 12, 2773 (2019).

    Article  Google Scholar 

  14. J. Liu, Z. Cui, and C. Li, Comput. Mater. Sci. 41, 375 (2008).

    Article  Google Scholar 

  15. L. Li, Y. Wang, H. Li, W. Jiang, T. Wang, C.-C. Zhang, F. Wang, and H. Garmestani, Comput. Mater. Sci. 166, 221 (2019).

    Article  Google Scholar 

  16. H. Mirzadeh, M. Roostaei, M.H. Parsa, and R. Mahmudi, Mater. Des. 68, 228 (2015).

    Article  Google Scholar 

  17. A. Najafizadeh, and J.J. Jonas, ISIJ Int. 46, 1679 (2006).

    Article  Google Scholar 

  18. N. Safara Nosar, F. Sandberg, and G. Engberg, Mater. Sci. Forum 941, 458–467 (2018).

    Article  Google Scholar 

  19. J. Duan, Y. Tan, L. Ji, W. Liu, J. Zhang, and R. Liu, Progr. Nat. Sci. Mater. Int. 25, 34 (2015).

    Article  Google Scholar 

  20. T. Lin, J.-X. Zhou, C.-N. Jing, Y.-T. Liu, L.-L. Zhang, and X.-B. Meng, High Temp. Mater. Process. (London) 39, 200 (2020).

    Article  Google Scholar 

  21. H. Mecking, and U. Kocks, Acta Metall. 29, 1865 (1981).

    Article  Google Scholar 

  22. H. Mirzadeh, Mater. Chem. Phys. 152, 123 (2015).

    Article  Google Scholar 

  23. Y.-J. Qin, Q.-L. Pan, Y.-B. He, W.-B. Li, X.-Y. Liu, and X. Fan, Mater. Sci. Eng. A 527, 2790 (2010).

    Article  Google Scholar 

  24. H. Yu, H. Yu, G. Min, S.S. Park, B.S. You, and Y.M. Kim, Met. Mater. Int. 19, 651 (2013).

    Article  Google Scholar 

  25. M. Nienaber, G. Kurz, D. Letzig, K.U. Kainer, and J. Bohlen, Crystals 12, 1307 (2022).

    Article  Google Scholar 

  26. I. Dillamore, P. Hadden, and D. Stratford, in (Hindawi, 1970)

  27. Y. Li, P. Hou, Z. Wu, Z. Feng, Y. Ren, and H. Choo, Mater. Des. 202, 109562 (2021).

    Article  Google Scholar 

Download references

Acknowledgement

The authors acknowledge support by the Center for Advanced Non-Ferrous Structural Alloys (CANFSA), a National Science Foundation Industry/University Cooperative Research Center (I/UCRC) (Award No. 1624836) at the Colorado School of Mines. Mag Specialties, Inc. supplied and designed all alloys evaluated during the project duration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Eres-Castellanos.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 133 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Storey, G.K., Eres-Castellanos, A., Sutton, S. et al. Modeling of Dynamic Recrystallization Kinetics in Ce Containing Mg Alloys. JOM 75, 2397–2405 (2023). https://doi.org/10.1007/s11837-023-05809-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05809-3

Navigation