Skip to main content

Advertisement

Log in

Biomaterial Hierarchy Selection Framework Under Uncertainty for More Reliable Sustainable Green Products

  • Biological Translation: Biological Materials Science and Bioinspired Design
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Determining an appropriate biocomposite material type for sustainable industry is still challenging for both designers and decision makers. Establishing appropriate methods for determining biomaterial constituents is still required to improve their functionality in various industrial applications. This work develops and introduces a novel systematic biomaterial hierarchy selection framework to properly assess and informatively select the constituents of biomaterials under uncertainty to keep preventing the production of waste, while increasing efficiencies in the uses of energy and resources toward better industrial sustainability. The added value step of this work is to be a practical roadmap to enhance better understanding of steps required for investigating, analyzing and finding appropriate biocomposite materials for future related bioproducts considering simultaneous technical, economic and environmental criteria. Findings of this work would dramatically improve not only achieving better low-cost green products, but also expanding sustainable opportunities toward finding feasible solutions for the future. The introduced framework and algorithm would also facilitate the design process for new generation of functional green products. The presented approach considers the micro detailed steps essential for building a functional biomaterial selection system toward developing better low-cost materials to provide even several long-term benefits to the overall sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Liu, H. Liang, J. Zhang, P. Zhang, Q. Xu, Q. Lu, and C. Zhang, J. Clean. Prod. 195, 786 (2018).

    Google Scholar 

  2. C. Amara, A. El Mahdi, R. Medimagh, and K. Khwaldia, Curr. Opin. Green Sustain. Chem. 31, 100512 (2021).

    Google Scholar 

  3. S. Dalai and C. Parida, J. Mater. Sci. Mater. Electron. 33, 6911 (2022).

    Google Scholar 

  4. F.M. AL-Oqla and M.S. Salit, Materials Selection for Natural Fiber Composites (Woodhead Publishing, Elsevier, Cambridge, 2017).

    Google Scholar 

  5. F.M. AL-Oqla, Cellulose 24, 2523 (2017).

    Google Scholar 

  6. V.K. Thakur, M.K. Thakur, P. Raghavan, and M.R. Kessler, ACS Sustain. Chem. Eng. 2, 1072 (2014).

    Google Scholar 

  7. C. Ingrao, J. Bacenetti, A. Bezama, V. Blok, J. Geldermann, P. Goglio, E.G. Koukios, M. Lindner, T. Nemecek, and V. Siracusa, J. Clean. Prod. 117, 4 (2016).

    Google Scholar 

  8. A.M. Jawarneh, F.M. AL-Oqla, and A.A. Jadoo, Environ. Sci. Pollut. Res. 28, 45609 (2021).

    Google Scholar 

  9. F.M. AL-Oqla, M. Alaaeddin, and Y. El-Shekeil, Eng. Solid Mech. 9, 439 (2021).

    Google Scholar 

  10. M.M. Rababah and F.M. AL-Oqla, Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers (Elsevier, Cambridge, 2020), pp1–10.

    Google Scholar 

  11. T. Ahuja, I.A. Mir, and D. Kumar, Biomaterials 28, 791 (2007).

    Google Scholar 

  12. A. Almagableh, F.M. AL-Oqla, and M.A. Omari, Int. J. Perform. Eng. 13, 73 (2017).

    Google Scholar 

  13. F.M. AL-Oqla, O.Y. Alothman, M. Jawaid, S. Sapuan, and M. Es-Saheb, Biomass Bioenergy (Springer, Cham, Switzerland, 2014), pp1–25.

    Google Scholar 

  14. F.M. AL-Oqla, A.A. Omar, and O. Fares, Int. J. Electron. 105, 504 (2018).

    Google Scholar 

  15. N. Aridi, S. Sapuan, E. Zainudin, and F.M. AL-Oqla, Int. J. Polym. Anal. Charact. 21, 675 (2016).

    Google Scholar 

  16. V. Thakur, A. Singha, and M. Thakur, Int. J. Polym. Mater. Polym. Biomater. 63, 17 (2014).

    Google Scholar 

  17. F.M. AL-Oqla, J. Polym. Environ. 29, 892 (2021).

    Google Scholar 

  18. F.M. AL-Oqla, S.M. Sapuan, and M. Jawaid, J. Nat. Fibers 13, 651 (2016).

    Google Scholar 

  19. F.M. AL-Oqla and M.S. Salit, Materials Selection for Natural Fiber Composites (Woodhead Publishing, Elsevier, Cambridge, 2017), pp169–234.

    Google Scholar 

  20. F.M. AL-Oqla and S. Sapuan, Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers (Elsevier, Cambridge, 2020)

    Google Scholar 

  21. F.M. AL-Oqla and V.K. Thakur, Int. J. Environ. Sci. Technol. 19, 6681 (2022).

    Google Scholar 

  22. F.M. AL-Oqla and S.M. Sapuan, J. Polym. Environ. 26, 1290 (2018).

    Google Scholar 

  23. F.M. AL-Oqla and A.A. Omar, Int. J. Electron. 102, 1044 (2015).

    Google Scholar 

  24. F.M. AL-Oqla and M.S. Salit, Materials Selection for Natural Fiber Composites (Woodhead Publishing, Elsevier, Cambridge, 2017), pp235–272.

    Google Scholar 

  25. O.O. Fares and F.M. AL-Oqla, Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers (Elsevier, Cambridge, 2020), pp173–184.

    Google Scholar 

  26. M. Hayajneh, F.M. AL-Oqla, and A. Aldhirat, J. Nat. Fibers 19, 7199 (2022).

    Google Scholar 

  27. F.M. AL-Oqla, Int. J. Appl. Mech. 13, 2150066 (2021).

    Google Scholar 

  28. M. Alaaeddin, S.M. Sapuan, M. Zuhri, E. Zainudin, and F.M. AL-Oqla, J. Clean. Prod. 235, 473 (2019).

    Google Scholar 

  29. M. Alaaeddin, S.M. Sapuan, M. Zuhri, E. Zainudin, and F.M. AL-Oqla, Renew. Sustain. Energy Rev. 102, 318 (2019).

    Google Scholar 

  30. V. Sadrmanesh, Y. Chen, M. Rahman, and F.M. AL-Oqla, J. Clean. Prod. 238, 117891 (2019).

    Google Scholar 

  31. N. Aridi, S. Sapuan, E. Zainudin, and F.M. AL-Oqla, Int. J. Polym. Anal. Charact. 21, 305 (2016).

    Google Scholar 

  32. M. Alaaeddin, S. Sapuan, M. Zuhri, E. Zainudin, and F.M. AL-Oqla, Materials 12, 2104 (2019).

    Google Scholar 

  33. F.M. AL-Oqla and S.M. Sapuan, J. Mater. Cycles Waste Manag. 25, 337 (2023).

    Google Scholar 

  34. F.M. AL-Oqla and R. Al-Jarrah, Cellulose 28, 8541 (2021).

    Google Scholar 

  35. F.M. AL-Oqla and M.S. Salit, Materials Selection for Natural Fiber Composites (Woodhead Publishing, Cambridge, 2017), pp23–48.

    Google Scholar 

  36. F.M. AL-Oqla, Cellulose 28, 2203 (2021).

    Google Scholar 

  37. F.M. AL-Oqla and M.T. Hayajneh, Int. J. Sustain. Eng. 14, 1043 (2021).

    Google Scholar 

  38. A.M. Al-Ghraibah, M. Al-Qudah, and F.M. AL-Oqla, Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers (Elsevier, Cambridge, 2020), pp157–171.

    Google Scholar 

  39. N. Aridi, S. Sapuan, E. Zainudin, and F.M. AL-Oqla, Curr. Org. Synth. 14, 263 (2017).

    Google Scholar 

  40. S.M. Sapuan, W. Haniffah, and F.M. AL-Oqla, Int. J. Perform. Eng. 12, 553 (2016).

    Google Scholar 

  41. S. Sapuan and M. Mansor, Mat. Des. 58, 161 https://doi.org/10.1016/j.matdes.2014.01.059 (2014).

    Article  Google Scholar 

  42. F.M. AL-Oqla and M.T. Hayajneh, A design decision-making support model for selecting suitable product color to increase probability. In Paper presented at the Design Challenge Conference: Managing Creativity, Innovation, and Entrepreneurship, Amman, Jordan (2007).

  43. F.M. AL-Oqla, M.T. Hayajneh, and A. Aldhirat, Polym. Compos. 42, 5501 (2021).

    Google Scholar 

  44. F.M. AL-Oqla and S.M. Sapuan, in Kenaf Fibers and Composites. ed. by S.M. Sapuan, J. Sahari, M.R. Ishak, and M.L. Sanyang (CRC Press, Boca Raton, 2018).

    Google Scholar 

  45. F.M. AL-Oqla, S.M. Sapuan, T. Anwer, M. Jawaid, and M. Hoque, Synth. Met. 206, 42 (2015).

    Google Scholar 

  46. M.T. Hayajneh, F.M. AL-Oqla, and M. Mu’ayyad, E-Polymers 21, 710 (2021).

    Google Scholar 

  47. F.M. AL-Oqla and S.M. Sapuan, JOM 67, 2450 (2015).

    Google Scholar 

  48. F.M. AL-Oqla, S.M. Sapuan, M. Ishak, and A. Nuraini, Int. J. Polym. Anal. Charact. 20, 191 (2015).

    Google Scholar 

  49. Y. El-Shekeil, S. Sapuan, M. Jawaid, and O.M. Al-Shuja’a, Mater. Des. 58, 130 (2014).

    Google Scholar 

  50. A.K. Gupta, M. Biswal, S. Mohanty, and S. Nayak, Fibers Polym. 15, 994 (2014).

    Google Scholar 

  51. M.F. Ashby and K. Johnson, Materials and Design: The Art and Science of Material Selection in Product Design (Butterworth-Heinemann, Oxford, 2013).

    Google Scholar 

  52. F.M. AL-Oqla and M.T. Hayajneh, Int. J. Interact. Des. Manuf. (IJIDeM) 16, 1727 (2022).

    Google Scholar 

  53. F.M. AL-Oqla, M.T. Hayajneh, and O. Fares, J. Clean. Prod. 241, 118256 (2019).

    Google Scholar 

  54. F.M. AL-Oqla and Y. El-Shekeil, J. Clean. Prod. 222, 865 (2019).

    Google Scholar 

  55. M. Alaaeddin, S. Sapuan, M. Zuhri, E. Zainudin, and F.M. AL-Oqla, Materials 12, 3007 (2019).

    Google Scholar 

  56. F.M. AL-Oqla, Int. J. Sustain. Eng. https://doi.org/10.1080/19397038.2021.1966127 (2021).

    Article  Google Scholar 

  57. O. Fares, F.M. AL-Oqla, and M.T. Hayajneh, Mater. Chem. Phys. 229, 174 (2019).

    Google Scholar 

  58. M.I. Al-Widyan and F.M. Al-Oqla, Int. J. Eng. Res. Appl. 1, 1610 (2011).

    Google Scholar 

  59. M.I. Al-Widyan and F.M. Al-Oqla, Build. Simul. 7, 537 https://doi.org/10.1007/s12273-013-0170-3 (2014).

    Article  Google Scholar 

  60. F.M. AL-Oqla, M.S. Sapuan, M.R. Ishak, and A.A. Nuraini, Am. J. Appl. Sci 12, 64 (2015).

    Google Scholar 

  61. M. Sanyang and S. Sapuan, J. Food Sci. Technol. 52, 6445 (2015).

    Google Scholar 

  62. M. Alaaeddin, S. Sapuan, M. Zuhri, E. Zainudin, and F.M. AL-Oqla, Compos. Part B Eng. 176, 107342 (2019).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

FMA-O has performed the whole work.

Corresponding author

Correspondence to Faris M. AL-Oqla.

Ethics declarations

Conflict of interest

The corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AL-Oqla, F.M. Biomaterial Hierarchy Selection Framework Under Uncertainty for More Reliable Sustainable Green Products. JOM 75, 2187–2198 (2023). https://doi.org/10.1007/s11837-023-05797-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05797-4

Navigation