Skip to main content
Log in

Investigation of the Effects of Stress Triaxiality and Porosity on Failure Behavior of Binder Jetted 316 Stainless Steel Infiltrated with Bronze

  • Fatigue and Fracture of Additively Manufactured Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The stress state-dependent fracture behavior of binder jetted 316L stainless steel infiltrated with bronze (SS316 + bronze) with varying porosity and secondary phases was investigated. Notched tension specimens were fabricated to probe mechanical behavior under stress triaxialities ranging from approximately 0.5 to 0.8. Variations in porosity and secondary phases were studied by performing bronze infiltration in different N2- and Ar-based atmospheres. All samples infiltrated in N2-based atmospheres had (Cr, Mo)2N precipitates whereas samples infiltrated in the Ar-based atmosphere had (Cr, Mo)7C3 precipitates. Internal porosity was assessed using x-ray computed tomography (XCT) and ultrasonic attenuation and wave speed measurements. Finite element simulations were performed to determine the stress state-dependent strains to failure of samples, which were linked to nondestructive evaluation signals. Ultrasonic signals were found to correlate to pore volume fraction from XCT and mechanical properties, with attenuation being inversely correlated, and wave speed being positively correlated, with strength and ductility. The ductility of the samples was inversely correlated to stress triaxiality and porosity. In samples with similar porosities but infiltrated in different environments, the higher fraction of (Cr, Mo)2N in samples infiltrated in N2-based atmospheres led to increased strength and reduced ductility compared to those infiltrated in the Ar-based atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All relevant data are available from the authors.

References

  1. R. M. German, Sintering Theory and Practice (John Wiley & Sons, Inc, 1996).

  2. N. Huang, O.J. Cook, R.L.W. Smithson, C.M. Kube, A.P. Argüelles, and A.M. Beese, Addit. Manuf. 51, 102591 (2022).

    Google Scholar 

  3. A. Mostafaei, E.L. Stevens, E.T. Hughes, S.D. Biery, C. Hilla, and M. Chmielus, Mater. Des. 108, 126 (2016).

    Article  Google Scholar 

  4. M. Doyle, K. Agarwal, W. Sealy, and K. Schull, Procedia Manuf. 1, 251 (2015).

    Article  Google Scholar 

  5. R.K. Enneti, and K.C. Prough, Int. J. Refract. Met. Hard Mater. 84, 104991 (2019).

    Article  Google Scholar 

  6. J.W. Oh, S. Nahm, B. Kim, and H. Choi, J. Korean Inst. Met. Mater. 57, 227 (2019).

    Article  Google Scholar 

  7. D. Gilmer, L. Han, E. Hong, D. Siddel, A. Kisliuk, S. Cheng, D. Brunermer, A. Elliott, and T. Saito, Addit. Manuf. 35, 101341 (2020).

    Google Scholar 

  8. M. Vaezi, and C.K. Chua, Int. J. Adv. Manuf. Technol. 53, 275 (2011).

    Article  Google Scholar 

  9. T. Do, T. J. Bauder, H. Suen, K. Rego, J. Yeom, and P. Kwon, in Vol. 1 Addit. Manuf. Bio Sustain. Manuf. (American Society of Mechanical Engineers, 2018), pp. 1–10.

  10. S. Mirzababaei, B.K. Paul, and S. Pasebani, Addit. Manuf. 53, 102720 (2022).

    Google Scholar 

  11. A. Mostafaei, P. Rodriguez De Vecchis, M.J. Buckenmeyer, S.R. Wasule, B.N. Brown, and M. Chmielus, Mater. Sci. Eng. C 102, 276 (2019).

    Article  Google Scholar 

  12. Y. Bao, Eng. Fract. Mech. 72, 505 (2005).

    Article  Google Scholar 

  13. A.E. Wilson-Heid, and A.M. Beese, Addit. Manuf. 39, 101862 (2021).

    Google Scholar 

  14. E.T. Furton, A.E. Wilson-Heid, and A.M. Beese, Addit. Manuf. 48, 102414 (2021).

    Google Scholar 

  15. J. Sun, Eng. Fract. Mech. 39, 799 (1991).

    Article  Google Scholar 

  16. J. Kim, X. Gao, and T.S. Srivatsan, Eng. Fract. Mech. 71, 379 (2004).

    Article  Google Scholar 

  17. T. Tancogne-Dejean, C.C. Roth, and D. Mohr, Int. J. Mech. Sci. 207, 106647 (2021).

    Article  Google Scholar 

  18. Z. Wang, and A.M. Beese, Mater. Sci. Eng. A 743, 824 (2019).

    Article  Google Scholar 

  19. N. Huang, O.J. Cook, J.D. Warner, R.L.W. Smithson, C.M. Kube, A.P. Argüelles, and A.M. Beese, Addit. Manuf. 59, 103162 (2022).

    Google Scholar 

  20. P. Pou, J. Val, A. Riveiro, R. Comesaña, F. Arias-gonzález, F. Lusquiños, M. Bountinguiza, F. Quintero, and J. Pou, Appl. Surf. Sci. 475, 896 (2019).

    Article  Google Scholar 

  21. I. Cvijović, I. Parezanović, and M. Spiegel, Corros. Sci. 48, 980 (2006).

    Article  Google Scholar 

  22. O.J. Cook, N. Huang, R.L.W. Smithson, C.M. Kube, A.M. Beese, and A.P. Arguelles, Mater. Eval. 80, 37 (2022).

    Google Scholar 

  23. M. Toozandehjani, K.A. Matori, F. Ostovan, F. Mustapha, N.I. Zahari, and A. Oskoueian, J. Mater. Sci. 50, 2643 (2015).

    Article  Google Scholar 

  24. A. Thompson, I. Maskery, and R.K. Leach, Meas. Sci. Technol. 27, 7 (2016).

    Article  Google Scholar 

  25. K.H. Beck, Mater. Eval. 49, 875 (1991).

    Google Scholar 

  26. L. Yu, Y. Guo, F.J. Margetan, R.B.R.B. Thompson, and A.I.P. Conf, Proc. 557, 1330 (2001).

    Google Scholar 

  27. J.M.M. Pinkerton, Proc. Phys. Soc. Sect. B 62, 129 (1949).

    Article  Google Scholar 

  28. J.S. Lim, Two-Dimensional Signal and Image Processing (Prentice Hall, Englewood Cliffs, 1990).

    Google Scholar 

  29. D. Bradley, G. Roth, and J. Graph, Tools 12, 13 (2007).

    Article  Google Scholar 

  30. A. Du Plessis, I. Yadroitsev, I. Yadroitsava, and S.G. Le Roux, 3D Print. Addit. Manuf. 5, 227 (2018).

    Google Scholar 

  31. Dassault Systemes Simulia Corp., (2018).

  32. H.W. Swift, J. Mech. Phys. Solids 1, 1 (1952).

    Article  Google Scholar 

  33. N.J. Salim, I. Arretche, and K.H. Matlack, J. Manuf. Process. 85, 612 (2023).

    Article  Google Scholar 

  34. S. Cui, S. Lu, K. Tieu, G.K. Meenashisundaram, L. Wang, X. Li, J. Wei, and W. Li, Wear 477, 203788 (2021).

    Article  Google Scholar 

  35. L. Wang, A.K. Tieu, S. Lu, S. Jamali, G. Hai, and Q. zhu, H. H. Nguyen, and S. Cui, Tribol Int. 156, 106810 (2021).

    Article  Google Scholar 

  36. A. Odgaard, Bone 20, 315 (1997).

    Article  Google Scholar 

  37. ASTM International, Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes ’ Principle (2017).

  38. A.C. Mackenzie, J.W. Hancock, and D.K. Brown, Eng. Fract. Mech. 9, 167 (1977).

    Article  Google Scholar 

  39. F.A. McClintock, J. Appl. Mech. 35, 363 (1968).

    Article  Google Scholar 

  40. Y. Bao, and T. Wierzbicki, Int. J. Mech. Sci. 46, 81 (2004).

    Article  Google Scholar 

  41. V. Tvergaard, and A. Needleman, Acta Metall. 32, 157 (1984).

    Article  Google Scholar 

  42. A. Takahashi, and N.M. Ghoniem, J. Mech. Phys. Solids 56, 1534 (2008).

    Article  Google Scholar 

  43. G. Hübschen, In: Mater. Charact. Using Nondestruct. Eval. Methods (2016), pp. 177–234.

Download references

Acknowledgements

The authors are grateful for the financial support by 3M Company (Grant Number 226534). Any opinions, findings, and conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of 3M Company. The samples were provided by 3M Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allison M. Beese.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, N., Cook, O.J., Smithson, R.L.W. et al. Investigation of the Effects of Stress Triaxiality and Porosity on Failure Behavior of Binder Jetted 316 Stainless Steel Infiltrated with Bronze. JOM 75, 1941–1952 (2023). https://doi.org/10.1007/s11837-023-05785-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05785-8

Navigation