Skip to main content
Log in

Investigation of the Induction Heating Phenomenon of Sintered Coatings with Copper Powders

  • Advanced Magnetic Materials for Energy and Other Functional Applications and Devices
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Via micro- and nano-structure design of a coating layer on the bottom of ceramic pots with copper powders and low melting point glass powders, a simple and low-cost solution for fabricating high-efficiency induction heating ceramic pots without changing the induction cookers has been provided. The influences of sintering temperature and glass content on the heating efficiency of the copper layer were studied. The hysteresis loop, resistivity, and microstructure of the copper layer were investigated using a vibrating sample magnetometer, a field-emission scanning electron microscope, and a high-resolution transmission electron microscope, respectively. Microstructure observation revealed that an insulating glass film with 1.06 nm width was formed between the adjacent copper particles in the sintered copper layer. The experimental results showed that the sintered layer made with copper powder slurry had a resistivity of 22.67 × 10–8 Ωm, which is 12.95 times that of a pure copper plate. The saturation magnetization of the sintered layer under the static magnetic field was about 3.55 × 10–2 emu/g, which is 3.38 times that of a copper plate. A ceramic pot with a sintered copper layer takes about 510 s to heat 500 mL of water from room temperature to 100°C under the power of 500 W. Its heating efficiency is comparable to that of a ferromagnetic stainless-steel pot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. O. Lucia, P. Maussion, E.J. Dede, and J.M. Burdio, IEEE Trans. Ind. Electron. 61, 2509 (2013).

    Article  Google Scholar 

  2. B. Thomas, D. Miro, M. Peter, and B. Debes, Compos. Part A Appl. Sci. Manuf. 57, 27 (2014).

    Article  Google Scholar 

  3. P.D. Agarwal, IEEE Trans. Commun. 78, 169 (1959).

    Google Scholar 

  4. Z.T. Yong, S.P. Chandrakant, J.S.T. Ang, and W.C. Jia, J. Membr. Sci. 606, 118150 (2020).

    Article  Google Scholar 

  5. K. Vladimir, O. Elena, M. Olga, F. Marina, Z. Andrey, P. Sergey, and F. Aleksandr, Ceram. Int. 49, 2034 (2023).

    Article  Google Scholar 

  6. A. Fomin, Ceram. Int. 45, 8258 (2019).

    Article  Google Scholar 

  7. Y.Y. Lian, L. Wang, J.Y. Cao, T.T. Liu, Z.J. Xu, B.W. Yang, T.Q. Huang, X.D. Jiang, and N.N. Wu, Adv. Compos. Hybrid. Mater. 4, 925 (2021).

    Article  Google Scholar 

  8. N. Kakuta, K. Nishijima, K. Kondo, and Y. Yamada, J. Appl. Phys. 122, 044901 (2017).

    Article  Google Scholar 

  9. B.R. Anupam, U.C. Sahoo, and A.K. Chandrappa, Constr. Build. Mater. 321, 126395 (2022).

    Article  Google Scholar 

  10. B.H. Dinh, D.W. Park, and T.H.M. Le, Constr. Build. Mater. 164, 246 (2018).

    Article  Google Scholar 

  11. V.Y. Skeeba, V.V. Ivancivsky, and N.V. Martyushev, Metals 11, 1354 (2021).

    Article  Google Scholar 

  12. Z.M. Liu, T.D. Wang, Y.F. Meng, Z.C. Han, and T. Jin, Int. J. Pavement Eng. 23, 3838 (2022).

    Article  Google Scholar 

  13. P.B. Kharat, S.B. Somvanshi, P.P. Khirade, and K.M. Jadhav, ACS Omega 5, 23378 (2020).

    Article  Google Scholar 

  14. O. Lucia, J. Acero, C. Carretero, and J. Burdio, IEEE Trans. Ind. Electron. 7, 35 (2013).

    Google Scholar 

  15. M.K. Kazimierczuk, T. Nandakumar, and S. Wang, IEEE Trans. Aeros. Elec. Syst. 29, 88 (1992).

    Article  Google Scholar 

  16. M. Kamli, S. Yamamoto, and M. Abe, IEEE Trans. Ind. Elec. 43, 163 (1996).

    Article  Google Scholar 

  17. H.M. El-Mashad, and Z.L. Pan, Food Eng. Rev. 9, 82 (2017).

    Article  Google Scholar 

  18. E. Jang, S.M. Park, D. Joo, H.M. Ahn, and K. Lee, J. Electr. Eng. Technol. 14, 2399 (2019).

    Article  Google Scholar 

  19. F.P. Dawson, and P. Jain, IEEE Trans. Power Electron. 6, 430 (1991).

    Article  Google Scholar 

  20. F.G. Alvear, R. Carlos, and P. Joe, JOM. 72, 11 (2020).

    Google Scholar 

  21. C.S. Chen, China patent CN201310450752.3, 18 May 2016

  22. A. Pan, H. Lan, Y. Huang, C. Peng, and S. Wang, Appl. Sci. 9, 970 (2019).

    Article  Google Scholar 

  23. X.P. Qu, D.H. Cao, and Y.H. Huang, China patent CN110386758A, 29 Oct 2019

  24. K. Pashova, E. Dhaouadi, I. Hinkov, O. Brinza, Y. Roussigné, M. Abderrabba, and S. Farhat, Coatings 10, 305 (2020).

    Article  Google Scholar 

  25. M.S. Huang, C.C. Liao, Z.F. Li, Z.R. Shih, and H.W. Hsueh, IEEE Access 9, 5105 (2021).

    Article  Google Scholar 

  26. A. Ahlbom, and M. Feychting, Br. Med. Bull. 68, 157 (2003).

    Article  Google Scholar 

  27. S. Yao, J. Xing, J. Zhang, S. Xiong, Y. Yang, X. Yuan, H. Li, and H. Tong, J. Mater. Sci. 29, 18540 (2018).

    Google Scholar 

  28. Q. Ma, S. Ma, J. Bai, and H. Wang, RSC Adv. 7, 47500 (2017).

    Article  Google Scholar 

  29. H. Zhang, H. Bai, Q. Jia, W. Guo, L. Liu, and G. Zou, Acta Metall. Sin. (Engl. Lett.) 33, 1543 (2020).

    Article  Google Scholar 

  30. A. Sahu, R.S. Maurya, S. Ram, L.K. Singh, and T. Laha, Acta Metall. Sin. (Engl. Lett.) 35, 1043 (2022).

    Article  Google Scholar 

  31. W. Han, K.T. Chau, and Z. Zhang, IEEE Trans. Ind. Electron. 64, 1982 (2017).

    Article  Google Scholar 

  32. P. Cui, W.B. Zhu, H.J. Ji, H.T. Chen, C.J. Hang, and M.Y. Li, Appl. Energy. 321, 119316 (2022).

    Article  Google Scholar 

  33. M. Runde, and N. Magnusson, Physica C 372, 1339 (2002).

    Article  Google Scholar 

  34. W. Chen, Z. Sun, Z. Wang, L. Gu, X. Xu, S. Wu, and C. Gao, Science 366, 983 (2020).

    Article  Google Scholar 

  35. H. Bishara, S. Lee, T. Brink, M. Ghidelli, and G. Dehm, ACS Nano 15, 16607 (2021).

    Article  Google Scholar 

  36. J.C. Fisher, and I. Giaever, J. Appl. Phys. 32, 172 (1961).

    Article  Google Scholar 

  37. D. Gatteschi, and R. Sessoli, Angew. Chem. Int. Ed. 42, 268 (2003).

    Article  Google Scholar 

  38. G.R. Ruschau, S. Yoshikawa, and R.E. Newnham, J. Appl. Phys. 72, 953 (1992).

    Article  Google Scholar 

  39. P. Zhang, Y. Bin, R. Zhang, and M. Matsuo, Polym. J. 49, 839 (2017).

    Article  Google Scholar 

  40. J.G. Simmons, J. Appl. Phys. 34, 1793 (1963).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by key research project of education department of Guangdong Province, China [No. 2020ZDZX2026].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuangxi Wang.

Ethics declarations

Conflict of interest

The authors declare no known competing financial interests or personal relationships that influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 302 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Wei, J., Zheng, H. et al. Investigation of the Induction Heating Phenomenon of Sintered Coatings with Copper Powders. JOM 75, 1800–1809 (2023). https://doi.org/10.1007/s11837-023-05782-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05782-x

Navigation