Skip to main content
Log in

Extraction of Critical Metals from Secondary Source: Leaching Ti and V from Brazilian Fe-Ti-V Deposit Residue

  • Process Intensification in Hydro- and Electrometallurgy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The growing demand for critical metals to supply the market has led to searches for new sources crucial to technological development. The present study aimed to leach Ti and V from the non-magnetic fraction of a non-oxidized Brazilian Fe-Ti-V deposit. Leaching experiments were carried out with HCl, and the effect of the solid–liquid ratio, time, temperature, acid concentration, and NaHF2 and Fe0 additions were evaluated. The extraction of Ti and V achieved 88.1% and 82.0%, respectively, using 30%HCl, solid–liquid ratio 1/6, and NaHF2 dosage 10% w/w at 85°C. Reducing leaching increased the yield to 95.1% and 91.4%, respectively. Kinetic modeling showed that the leaching of V fitted better for diffusion control through the fluid film, and Ti fitted better for solid product diffusion control. The hydrolysis step separated 98.5% of Ti in the solid phase with losses of Fe (9.5%) and V (5.7%). Therefore, the hydrometallurgical route designed is simple, and it is possible to obtain high-purity products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. U.S. Department of Energy, Critical minerals and materials (2020). https://www.energy.gov/sites/prod/files/2021/01/f82/DOECriticalMineralsandMaterialsStrategy_0.pdf.

  2. European Commission, Critical raw materials resilience: charting a path towards greater security and sustainability (2020). https://ec.europa.eu/docsroom/documents/42849. Accessed 6 Oct 2020.

  3. U.S. Department of Energy, Critical materials strategy (2010).

  4. S. Bobba, S. Carrara, J. Huisman, F. Mathieux, C. Pavel, Critical raw materials for strategic technologies and sectors in the EU: a foresight study. European Union (2020).

  5. D.E. Polyak, Vanadium (2021). https://pubs.usgs.gov/periodicals/mcs2021/mcs2021-vanadium.pdf.

  6. J. Gambogi, Titanium mineral concentrates (2021). https://pubs.usgs.gov/periodicals/mcs2021/mcs2021-titanium-minerals.pdf.

  7. L.S. Martins, L.F. Guimarães, A.B. Botelho Junior, J.A.S. Tenório, and D.C.R. Espinosa, J. Environ. Manag. 295, 113091 (2021).

    Article  Google Scholar 

  8. R. Gilligan, and A.N. Nikoloski, Miner. Eng. 146, 106106 (2020).

    Article  Google Scholar 

  9. T. Ogasawara, and R.V. Veloso de Araújo, Hydrometallurgy 56, 203 (2000).

    Article  Google Scholar 

  10. W. Mu, T. Zhang, Z. Dou, G. Lü, L. Hu, B. Yu, and Y. Liu, Appl. Mech. Mater. 79, 242 (2011).

    Article  Google Scholar 

  11. W.Z. Mu, T.A. Zhang, Z.H. Dou, G.Z. Lü, and Y. Liu, Trans. Nonferrous Met. Soc. China (Engl. Ed.) 21, 2078 (2011).

    Article  Google Scholar 

  12. I. Girgin, Hydrometallurgy 24, 127 (1990).

    Article  Google Scholar 

  13. S. Zhang, and M.J. Nicol, Hydrometallurgy 103, 196 (2010).

    Article  Google Scholar 

  14. N. El-Hazek, T.A. Lasheen, R. El-Sheikh, and S.A. Zaki, Hydrometallurgy 87, 45 (2007).

    Article  Google Scholar 

  15. M.H.H. Mahmoud, A.A.I. Afifi, and I.A. Ibrahim, Hydrometallurgy 73, 99 (2004).

    Article  Google Scholar 

  16. X. Zhu, W. Li, and X. Guan, Int. J. Miner. Process. 157, 55 (2016).

    Article  Google Scholar 

  17. X. Hao, L. Lü, B. Liang, C. Li, P. Wu, and J. Wang, Hydrometallurgy 113–114, 185 (2012).

    Article  Google Scholar 

  18. H.H. Ahn, and M.S. Lee, Miner. Process. Extr. Metall. Rev. 42, 312 (2021).

    Article  Google Scholar 

  19. W. Purcell, M.K. Sinha, A.Q. Vilakazi, and M. Nete, Hydrometallurgy 191, 105242 (2020).

    Article  Google Scholar 

  20. E.M.M.M. de Aguiar, A.B. Botelho Junior, H.A. Duarte, D.C.R. Espinosa, J.A.S. Tenório, and M.P.G. Baltazar, Can. J. Chem. Eng. 100, 3408 (2022).

    Article  Google Scholar 

  21. A.B. Botelho Junior, D.C.R. Espinosa, and J.A.S. Tenório, Min. Metall. Explor. 38, 161 (2021).

    Google Scholar 

  22. A.B. Botelho Junior, M.M. Jiménez-Correa, D.C.R. Espinosa, and J.A.S. Tenório, Braz. J. Chem. Eng. 35, 1241 (2018).

    Article  Google Scholar 

  23. Z. Yuan, X. Zhao, Q. Meng, Y. Xu, and L. Li, Miner. Eng. 149, 106267 (2020).

    Article  Google Scholar 

  24. W. Xiao, X.G. Lu, X.L. Zou, X.M. Wei, and W.Z. Ding, Trans. Nonferrous Met. Soc. China (Engl. Ed.) 23, 2439 (2013).

    Article  Google Scholar 

  25. M.V. Nikolic, Z.Z. Vasiljevic, M.D. Lukovic, V.P. Pavlovic, J. Vujancevic, M. Radovanovic, J.B. Krstic, B. Vlahovic, and V.B. Pavlovic, Sens. Actuators B Chem. 277, 654 (2018).

    Article  Google Scholar 

  26. D.T. França, B.F. Amorim, A.M. de Morais Araújo, M.A. Morales, F. Bohn, and S.N. de Medeiros, Mater. Lett. 236, 526 (2019).

    Article  Google Scholar 

  27. R.G. Haverkamp, D. Kruger, and R. Rajashekar, Hydrometallurgy 163, 198 (2016).

    Article  Google Scholar 

  28. G.K. Das, Y. Pranolo, Z. Zhu, and C.Y. Cheng, Hydrometallurgy 133, 94 (2013).

    Article  Google Scholar 

  29. A.B. Botelho Junior, D.C.R. Espinosa, and J.A.S. Tenório, J. Rare Earths 39, 201 (2021).

    Article  Google Scholar 

  30. A.B. Botelho Junior, D.C.R. Espinosa, and J.A.S. Tenório, J. Sustain. Metall. 7, 1627 (2021).

    Article  Google Scholar 

  31. Z. Wang, L. Chen, T. Aldahrib, C. Li, W. Liu, G. Zhang, Y. Yang, and D. Luo, Hydrometallurgy 191, 105156 (2020).

    Article  Google Scholar 

  32. X. Chen, H. Wang, and B. Yan, Hydrometallurgy 191, 105239 (2020).

    Article  Google Scholar 

  33. X. Zhang, D. Fang, S. Song, G. Cheng, and X. Xue, J. Hazard. Mater. 368, 300 (2019).

    Article  Google Scholar 

  34. S. Cohen, H. Selig, and R. Gut, J. Fluor. Chem. 20, 349 (1982).

    Article  Google Scholar 

  35. M. Stancheva, and M. Bojinov, Electrochim. Acta 78, 65 (2012).

    Article  Google Scholar 

  36. J. Xiang, G. Pei, W. Lv, S. Liu, X. Lv, and G. Qiu, Chem. Eng. Process. Process Intensif. 147, 107774 (2020).

    Article  Google Scholar 

  37. Y.M. Zhang, S.X. Bao, T. Liu, T.J. Chen, and J. Huang, Hydrometallurgy 109, 116 (2011).

    Article  Google Scholar 

  38. J. Zhang, Q. Zhu, Z. Xie, and H. Li, Hydrometallurgy 157, 226 (2015).

    Article  Google Scholar 

  39. V.S. Gireesh, V.P. Vinod, S. Krishnan Nair, and G. Ninan, Int. J. Miner. Process. 134, 36 (2015).

    Article  Google Scholar 

  40. R.A. Pepper, S.J. Couperthwaite, and G.J. Millar, Miner. Eng. 99, 8 (2016).

    Article  Google Scholar 

  41. R. Vásquez, and A. Molina, Miner. Eng. 39, 99 (2012).

    Article  Google Scholar 

  42. V.C.I. Takahashi, A.B. Botelho Junior, D.C.R. Espinosa, and J.A.S. Tenório, J. Environ. Chem. Eng. 8, 103801 (2020).

    Article  Google Scholar 

  43. A.M. Ramadan, M. Farghaly, W.M. Fathy, and M.M. Ahmed, Int. Res. J. Eng. Technol. 3, 46 (2016).

    Google Scholar 

  44. W. Nie, S. Wen, Q. Feng, D. Liu, and Y. Zhou, J. Market. Res. 9, 1750 (2020).

    Google Scholar 

  45. S.M. Seyed Ghasemi, and A. Azizi, J. Mater. Res. Technol. 7, 118 (2018).

    Article  Google Scholar 

  46. S. Reid, J. Tam, M. Yang, and G. Azimi, Sci. Rep. 7, 1 (2017).

    Article  Google Scholar 

  47. G. Senanayake, A. Senaputra, and M.J. Nicol, Hydrometallurgy 105, 60 (2010).

    Article  Google Scholar 

  48. F. Sadri, A.M. Nazari, and A. Ghahreman, J. Rare Earths 35, 739 (2017).

    Article  Google Scholar 

  49. J. Liu, Z. Yin, X. Li, Q. Hu, and W. Liu, Trans. Nonferrous Met. Soc. China (Engl. Ed.) 29, 641 (2019).

    Article  Google Scholar 

  50. F.P.C. Silvas, M.M. Jiménez Correa, M.P.K. Caldas, V.T. de Moraes, D.C.R. Espinosa, and J.A.S. Tenório, Waste Manag. 46, 503 (2015).

    Article  Google Scholar 

  51. M.M.J. Correa, F.P.C. Silvas, P. Aliprandini, V.T. de Moraes, D. Dreisinger, and D.C.R. Espinosa, Braz. J. Chem. Eng. 35, 919 (2018).

    Article  Google Scholar 

  52. A.B. Botelho Junior, S. Stopic, B. Friedrich, J.A.S. Tenório, and D.C.R. Espinosa, Metals (Basel) 2021, 11 (1999).

    Google Scholar 

  53. A.B. Botelho Junior, D.B. Dreisinger, D.C.R. Espinosa, and J.A.S. Tenório, Int. J. Chem. Eng. 2018, 1 (2018).

    Article  Google Scholar 

  54. I.D. Perez, I.A. Anes, A.B. Botelho Junior, and D.C.R. Espinosa, Clean. Eng. Technol. 1, 100031 (2020).

    Article  Google Scholar 

  55. K.N. Han, T. Rubcumintara, and M.C. Fuerstenau, Metall. Trans. B 18, 325 (1987).

    Article  Google Scholar 

  56. N.Y. Mostafa, M.H.H. Mahmoud, and Z.K. Heiba, Hydrometallurgy 139, 88 (2013).

    Article  Google Scholar 

  57. M. Pourbaix, in Atlas of electrochemical equilibria in aqueous solutions, ed. By J.A. Franklin, 2nd edn. National Association of Corrosion Engineers, Houston (1974).

  58. E. Olanipekun, Hydrometallurgy 53, 1 (1999).

    Article  Google Scholar 

  59. Z. Zhu, W. Zhang, and C.Y. Cheng, Hydrometallurgy 105, 304 (2011).

    Article  Google Scholar 

  60. J.H. Vinco, A.B. Botelho Junior, H.A. Duarte, D.C.R. Espinosa, and J.A.S. Tenório, Miner. Eng. 176, 107337 (2022).

    Article  Google Scholar 

  61. P. Hu, Y. Zhang, T. Liu, J. Huang, Y. Yuan, and Y. Yang, Sep. Purif. Technol. 180, 99 (2017).

    Article  Google Scholar 

  62. Y. Chang, X. Zhai, B. Li, and Y. Fu, Hydrometallurgy 101, 84 (2010).

    Article  Google Scholar 

  63. Y. Zhang, T.A. Zhang, D. Dreisinger, W. Zhou, F. Xie, G. Lv, and W. Zhang, Sep. Purif. Technol. 190, 123 (2018).

    Article  Google Scholar 

  64. Z. Liu, J. Huang, Y. Zhang, T. Liu, P. Hu, H. Liu, and D. Luo, Sep. Purif. Technol. 249, 116867 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the University of São Paulo for supporting this project and FAPESP (Grant: 2012/51871-9, 2019/11866-5, 2021/14842-0, São Paulo Research Foundation) and CAPES for the financial support. Thanks to the LCT laboratory for the chemical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amilton Barbosa Botelho Junior.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 268 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domingos, A.E.E.C., Botelho Junior, A.B., Duarte, H.A. et al. Extraction of Critical Metals from Secondary Source: Leaching Ti and V from Brazilian Fe-Ti-V Deposit Residue. JOM 75, 1581–1590 (2023). https://doi.org/10.1007/s11837-023-05774-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05774-x

Navigation