Skip to main content
Log in

Metallurgical and Bio-corrosion Attributes of Thermo-mechanically Processed α-Magnesium-Lithium Alloy for Bio-implant Application

  • Influence of Processing on Microstructure and Properties of Mg Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

We investigated the metallurgical and corrosion attributes of a stir-cast, single-phase magnesium-lithium alloy that had undergone thermo-mechanical processing. Microscopic observation showed that plastic deformation during hot-rolling at 300°C results in deformation twins. Twins and refined grain size improve the mechanical properties. To understand the corrosion kinetics, electrochemical investigations (potential-dynamic polarization and electrochemical impedance spectroscopy) and in-vitro studies (bio-corrosion) were carried out in simulated body fluid. Bio-film (hydroxyapatite compound) was deposited as a result of bio-corrosion, which offers good corrosion resistance and is non-toxic to humans. The presence of bio-mineralization, which is important in bio-corrosion, was confirmed by scanning electron microscopy with energy dispersive spectroscopy. The HEK-293 kidney cell viability test demonstrated that the α-Mg-4Li alloy, when rolled at 300°C with 90% reduction, exhibited good bio-corrosion characteristics for implant application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Materials

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. E. Ajami, E. Mahno, V.C. Mendes, S. Bell, R. Moineddin, and J.E. Davies, Acta Biomater. 10, 394 (2014).

    Google Scholar 

  2. F. Rossi, N.P. Lang, E. De Santis, F. Morelli, G. Favero, and D. Botticelli, Clin. Oral Implants Res. 25, 124 (2014).

    Google Scholar 

  3. M. Niinomi, and M. Nakai, Int. J. Biomater. 2011, 980 (2011).

    Google Scholar 

  4. B. Hanson, C. van der Werken, and D. Stengel, BMC Musculoskelet. Disord. 9, 73 (2008).

    Google Scholar 

  5. E.D. Spoerke, N.G. Murray, H. Li, L.C. Brinson, D.C. Dunand, and S.I. Stupp, Acta Biomater. 1, 523 (2005).

    Google Scholar 

  6. N. Li and Y. Zheng, J. Mater. Sci. Technol. 29, 489 (2013).

    Google Scholar 

  7. X.N. Gu and Y.F. Zheng, Front. Mater. Sci. China 4, 111 (2010).

    Google Scholar 

  8. T.C. Chang, J.Y. Wang, C.L. Chu, and S. Lee, Mater. Lett. 60, 3272 (2006).

    Google Scholar 

  9. S.R. Agnew, M.H. Yoo, and C.N. Tomé, Acta Mater. 49, 4277 (2001).

    Google Scholar 

  10. M.S. Uddin, C. Hall, and P. Murphy, Sci. Technol. Adv. Mater. 16, 53501 (2015).

    Google Scholar 

  11. M. Peron, J. Torgersen, and F. Berto, Metals 7, 252 (2017).

    Google Scholar 

  12. X. Wang, X. Zeng, G. Wu, S. Yao, and Y. Lai, J. Alloys Compd. 437, 87 (2007).

    Google Scholar 

  13. V. Tsakiris, C. Tardei, and F.M. Clicinschi, J. Magnes. Alloys 9, 1884 (2021).

    Google Scholar 

  14. R.C. Zeng, X.X. Sun, Y.W. Song, F. Zhang, S.Q. Li, H.Z. Cui, and E.H. Han, Trans. Nonferrous Metals Soc. China (Engl. Ed.) 23, 3293 (2013).

    Google Scholar 

  15. F.Z. Cui, J.X. Yang, Y.P. Jiao, Q.S. Yin, Y. Zhang, and I.S. Lee, Front. Mater. Sci. China 2, 143 (2008).

    Google Scholar 

  16. M. Salahshoor and Y.B. Guo, Int. J. Adv. Manuf. Technol. 64, 133 (2013).

    Google Scholar 

  17. A. Zamani, G.R. Omrani, and M.M. Nasab, Bone 44, 331 (2009).

    Google Scholar 

  18. R.T. Timmer and J.M. Sands, J. Am. Soc. Nephrol 10, 66 (1999).

    Google Scholar 

  19. Y. Yang, X. Peng, H. Wen, B. Zheng, Y. Zhou, W. Xie, and E.J. Lavernia, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44, 1101 (2013).

    Google Scholar 

  20. Y. Liu, Y. Wu, D. Bian, S. Gao, S. Leeflang, H. Guo, Y. Zheng, and J. Zhou, Acta Biomater. 62, 418 (2017).

    Google Scholar 

  21. J.R. Geddes, S. Burgess, K. Hawton, K. Jamison, and G.M. Goodwin, Am. J. Psychiatry 161, 217 (2004).

    Google Scholar 

  22. Y. Song, D. Shan, R. Chen, and E.H. Han, Corros. Sci. 51, 1087 (2009).

    Google Scholar 

  23. D. Cao, L. Wu, Y. Sun, G. Wang, and Y. Lv, J. Power Sources 177, 624 (2008).

    Google Scholar 

  24. W. Xu, N. Birbilis, G. Sha, Y. Wang, J.E. Daniels, Y. Xiao, and M. Ferry, Nat. Mater. 14, 1229 (2015).

    Google Scholar 

  25. G. Zou, Q. Peng, Y. Wang, and B. Liu, J. Alloys Compd. 618, 44 (2015).

    Google Scholar 

  26. Y. Xiong, T. Zhu, J. Yang, Y. Yu, and X. Gong, J. Mater. Eng. Perform. 29, 5710 (2020).

    Google Scholar 

  27. X.C. Ma, S.Y. Jin, R.Z. Wu, J.X. Wang, G.X. Wang, B. Krit, and S. Betsofen, Trans. Nonferrous Metals Soc. China (Engl. Ed.) 31, 3228 (2021).

    Google Scholar 

  28. D. Dhamodharan, P. Bhagat Singh, and S. Kumaran, Trans Indian Inst. Metals 72, 1631 (2019).

    Google Scholar 

  29. R.C. Zeng, L. Sun, Y.F. Zheng, H.Z. Cui, and E.H. Han, Corros. Sci. 79, 69 (2014).

    Google Scholar 

  30. Z. Sun, M. Zhou, H. Hu, and N. Li, Res. Lett. Mater. Sci. 2007, 1 (2007).

    Google Scholar 

  31. J.M. Seitz, R. Eifler, M. Vaughan, C. Seal, M. Hyland, and H.J. Maier, Magnes. Technol. Proc. Symp. 9, 371 (2014).

    Google Scholar 

  32. T. Kokubo and H. Takadama, Handbook of Biomineralization: Biological Aspects and Structure Formation, 3, 97 (2008).

    Google Scholar 

  33. T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, and T. Yamamum, J. Biomed. Mater. Res. 24, 721 (1990).

    Google Scholar 

  34. M. Talha, Y. Ma, P. Kumar, Y. Lin, and A. Singh, Colloids Surf. B Biointerfaces 176, 494 (2019).

    Google Scholar 

  35. C. Stewart, B. Akhavan, S.G. Wise, and M.M.M. Bilek, Prog. Mater. Sci. 106, 100588 (2019).

    Google Scholar 

  36. Y. Zhao, C. Zhang, J. Wang, H. Zhang, P. Zhang, T. Xie, S. Liu, and C. Peng, Int. J. Electrochem. Sci. 17, 220244 (2022).

    Google Scholar 

  37. N. Sriraman and S. Kumaran, in Materials Today Proceedings (Elsevier Ltd, 2019), pp. 1959–1961.

  38. B. Deng, Y. Dai, J. Lin, and D. Zhang, Materials 15, 3985 (2022).

    Google Scholar 

  39. M. Saravanakumar, S.R. Begum, and M. Vasumathi, Mater. Res. Express 6, 10 (2019).

    Google Scholar 

  40. A.M. Vora, J. Semicond. 33, 6 (2012).

    Google Scholar 

  41. ASTM G31–72, Standard Practices for Laboratory Immersion Corrosion Testing of Metals (ASTM International, West Conshohocken, 2004).

    Google Scholar 

  42. S. Cai, T. Lei, N. Li, and F. Feng, Mater. Sci. Eng. C 32, 2570 (2012).

    Google Scholar 

  43. A. Maltseva, V. Shkirskiy, G. Lefèvre, and P. Volovitch, Corros. Sci. 153, 272 (2019).

    Google Scholar 

  44. Q. Xiang, B. Jiang, Y. Zhang, X. Chen, J. Song, J. Xu, L. Fang, and F. Pan, Corros. Sci. 119, 14 (2017).

    Google Scholar 

  45. S. Kikuchi, Y. Nakamura, K. Nambu, and T. Akahori, Int. J. Lightweight Mater. Manuf. 2, 227 (2019).

    Google Scholar 

  46. J. Liu, E.H. Han, Y. Song, and D. Shan, J. Alloys Compd. 757, 356 (2018).

    Google Scholar 

  47. Y. Zhao, C. Zhang, J. Wang, H. Zhang, P. Zhang, T. Xie, S. Liu, and C. Peng, Int. J. Electrochem. Sci. 17, 220 (2022)

    Google Scholar 

  48. M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, and L.G. Johansson, Prog. Mater. Sci. 89, 92 (2017).

    Google Scholar 

  49. R.N. Panda, M.F. Hsieh, R.J. Chung, and T.S. Chin, J. Phys. Chem. Solids 64, 193 (2003).

    Google Scholar 

  50. H. Gheisari, E. Karamian, and M. Abdellahi, Ceram. Int. 41, 5967 (2015).

    Google Scholar 

  51. International Organization for Standardization. ISO 10993-5: 2009-Biological evaluation of medical devices-Part 5: Tests for in vitro cytotoxicity. 13,(2009)

Download references

Author information

Authors and Affiliations

Authors

Contributions

KU: Methodology, investigation, validation, writing—original draft. KS: conceptualization, methodology, supervision, validation, resources, project administration.

Corresponding author

Correspondence to Kumaran Sinnaeruvadi.

Ethics declarations

Conflicts of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulaganathan, K., Sinnaeruvadi, K. Metallurgical and Bio-corrosion Attributes of Thermo-mechanically Processed α-Magnesium-Lithium Alloy for Bio-implant Application. JOM 75, 2338–2350 (2023). https://doi.org/10.1007/s11837-023-05759-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05759-w

Navigation