Skip to main content
Log in

Hybrid Model of Mass-Concentration Conservation and Neural Network for Zinc Leaching

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

To realize the optimal control of the zinc leaching process, an accurate mathematical model is necessary. However, the modeling of zinc leaching process faces the challenges of complex reaction rate, low data quality and error transmission of cascade modeling. To solve these problems, a hybrid model of mass-concentration conservation and neural network (MCCNN) is proposed. First, the method of integral regularization is introduced to process data and reduce the influence of measurement noise. Then, a model based on mass-concentration conservation mechanism model and data-driven model is proposed to build sub-models of each unit, which can solve the problems of insufficient data and complex reaction rate. Finally, a parallel error compensation structure is proposed to alleviate the error transfer caused by the cascade of sub-models. This hybrid framework provides a feasible and effective solution for zinc leaching process modeling, and its effect is verified by numerical simulation and zinc leaching process case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Nan, J. Yang, W. Zeng, C. Tang, and Q. Hu, JOM 73, 1661 (2021).

    Article  Google Scholar 

  2. B. Zhang, C. Yang, and W. Gui, IFAC-PapersOnLine 49, 161 (2016).

    Article  Google Scholar 

  3. S. Fugleberg, A. Jarvinen, and E. Yllo, World Zinc 93, 241 (1993).

    Google Scholar 

  4. F. Tesfaye, A.E. Anderson, and M. Zhang, JOM 72, 2739 (2020).

    Article  Google Scholar 

  5. A.E. Anderson, F. Tesfaye, C.O. Iloeje, and S. Nicol, JOM 74, 1485 (2022).

    Article  Google Scholar 

  6. T. Lysak, N. Peskov, M. Slinko, Y.P. Tyulenin, V.Y. Bychkov, and V. Korchak, Chem. Eng. Sci. 144, 7 (2016).

    Article  Google Scholar 

  7. S.M.S. Ghasemi, and A. Azizi, J. Market. Res. 7, 118 (2018).

    Google Scholar 

  8. B. Zhang, C. Yang, H. Zhu, Y. Li, and W. Gui, Chem. Eng. J. 284, 294 (2016).

    Article  Google Scholar 

  9. Y.-F. Xie, S.-W. Xie, Y.-G. Li, C.-H. Yang, and W.-H. Gui, Control. Eng. Pract. 58, 54 (2017).

    Article  Google Scholar 

  10. S. Wang, Q. Wang, M. Tian, X. Guo, Q. Tian, Z. Wang and S. Qu, JOM, 1 (2022)

  11. D. Jiang, Z. Wang, J. Zhang, D. Jiang, K. Li, and F. Liu, JOM 74, 1633 (2022).

    Article  Google Scholar 

  12. S. Malinov, and W. Sha, Jom 57, 54 (2005).

    Article  Google Scholar 

  13. X. Yuan, Z. Ge, B. Huang, Z. Song, and Y. Wang, IEEE Trans. Industr. Inf. 13, 532 (2016).

    Article  Google Scholar 

  14. K. Feng, J. Lu, and J. Chen, Chin. J. Chem. Eng. 23, 2048 (2015).

    Article  Google Scholar 

  15. T. Turanyi, T. Berces, and S. Vajda, Int. J. Chem. Kinet. 21, 83 (1989).

    Article  Google Scholar 

  16. Z. Zhang, and M.L. Free, JOM 71, 1623 (2019).

    Article  Google Scholar 

  17. B. Sun, W.H. Gui, T. Wu, Y. Wang, and C.H. Yang, Hydrometallurgy 140, 102 (2013).

    Article  Google Scholar 

  18. G. Hu, Z. Mao, D. He, and F. Yang, Comput. Chem. Eng. 35, 2611 (2011).

    Article  Google Scholar 

  19. J. Zhang, Z.Z. Mao, R.D. Jia, and D.K. He, The Canadian Journal of Chemical Engineering 93, 1624(2015).

    Article  Google Scholar 

  20. S. Zhang, F. Wang, D. He, and R. Jia, Powder Technol. 224, 253 (2012).

    Article  Google Scholar 

  21. H. Zhu, J. Du, C. Zhou, and Y. Li, JOM 74, 1237 (2022).

    Article  Google Scholar 

  22. B. Sun, W. Gui, Y. Wang, C. Yang, and M. He, Control. Eng. Pract. 44, 89 (2015).

    Article  Google Scholar 

  23. Y.G. Li, W.H. Gui, K.L. Teo, H.Q. Zhu, and Q.Q. Chai, J. Process Control 22, 1878 (2012).

    Article  Google Scholar 

  24. B. Zhang, C. Yang, H. Zhu, Y. Li, and W. Gui, Ind. Eng. Chem. Res. 52, 17074 (2013).

    Article  Google Scholar 

  25. R. Jia, and F. You, AIChE J. 67, e17043 (2021).

    Article  Google Scholar 

  26. Y. Xie, S. Xie, X. Chen, W. Gui, C. Yang, and L. Caccetta, Hydrometallurgy 151, 62 (2015).

    Article  Google Scholar 

  27. Y.L. Yeow, S.R. Wickramasinghe, B. Han, and Y.-K. Leong, Chem. Eng. Sci. 58, 3601 (2003).

    Article  Google Scholar 

  28. D. Olivet, J. Valls, M.A. Gordillo, A. Freixo, and A. Sanchez, J. Chem. Technol. Biotechnol. Int. Res. Process Environ. Clean Technol. 80(4), 425 (2005).

    Google Scholar 

  29. F. Parrino, G.C. Roda, V. Loddo, and L. Palmisano, J. Catal. 366, 167 (2018).

    Article  Google Scholar 

  30. P.J. Davis and P. Rabinowitz, Methods of numerical integration, Courier Corporation, (2007).

  31. J. Zhang, Y. Tan, S. Li, Y. Wang, and R. Jia, ACS Omega 4, 19880 (2019).

    Article  Google Scholar 

  32. D.C. Psichogios, and L.H. Ungar, AIChE J. 38, 1499 (1992).

    Article  Google Scholar 

  33. D.S. Lee, P.A. Vanrolleghem, and J.M. Park, J. Biotechnol. 115, 317 (2005).

    Article  Google Scholar 

  34. Y. Cao, and D. Biss, J. Process Control 6, 37 (1996).

    Article  Google Scholar 

  35. D. Han, X. Yang, R. Li, and Y. Wu, J. Clean. Prod. 231, 254 (2019).

    Article  Google Scholar 

  36. S. Lu, J. Ding, and L. Liu, J. Chem. Eng. 66, 244 (2015).

    Google Scholar 

  37. S. Usmani, A.G. Quiroga, R.V. Padilla, G. Palmer, and M. Lake, Energy 211, 118658 (2020).

    Article  Google Scholar 

  38. P. Ziółkowski, P. Madejski, M. Amiri, T. Kuś, K. Stasiak, N. Subramanian, H. Pawlak-Kruczek, J. Badur, Ł Niedźwiecki, and D. Mikielewicz, Energies 14, 6304 (2021).

    Article  Google Scholar 

  39. M.-Z. Li, J.-M. Zhou, C.-R. Tong, W.-H. Zhang, and H.-S. Li, Metall. Res. Technol. 115, 107 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge National Natural Science Foundation of China (Grant No. 92167105) and the graduate students of Central South University for the independent exploration and innovation project (2022ZZTS0684).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keke Huang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Cheng, C., Huang, K. et al. Hybrid Model of Mass-Concentration Conservation and Neural Network for Zinc Leaching. JOM 75, 1684–1694 (2023). https://doi.org/10.1007/s11837-023-05755-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05755-0

Navigation