Skip to main content
Log in

Preparation of Fe2O3/Mn3O4/C Composites as High Performances Anode Materials for Lithium-Ion Batteries

  • Mechanistic Interactions in Energy Storage
  • Published:
JOM Aims and scope Submit manuscript

Abstract

To improve the electrochemical performances of Mn3O4, combining heterojunction structure with the carbon fiber is a good method; the heterojunction structure presents good electron conductivity, and carbon fiber can alleviate particle aggregation, thus improving electrochemical performances. Herein, the mixed transition metal oxide Fe2O3/Mn3O4/C composites with heterojunction structure are designed through carbonization at high temperature after in situ growth on lignocellulose by simple hydrothermal method. The results of phase analysis show that the synthesis of target product is successful. At the same time, the morphology, element distribution and graphitization degree of the material are characterized, respectively. The analysis of morphology verifies the existence of the heterojunction structure, and the results of electrochemical performances show that Fe2O3/Mn3O4/C anode material has excellent performance. The specific capacity of Fe2O3/Mn3O4/1C can be maintained at 917.53 mAh g−1 at 100 mA g−1, and the capacity retention ratio can be maintained at 137.9% after 200 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Li, H. Bian, C. Liu, D. Zhang, and Y. Yang, Renew. Sustain. Energy Rev. 42, 1464 (2015).

    Article  CAS  Google Scholar 

  2. H. Fu, C. Liu, G. Cao, C. Zhang, and H. Song, J. Mater. Chem. A Mater. Energy. Sustain. 4, 3362 (2016).

    Article  Google Scholar 

  3. B. Dunn, H. Kamath, and J.-M. Tarascon, Science 334, 928–935 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. W.T. Ju, C.W. Dong, B. Jin, Y.F. Zhu, Z. Wen, and Q. Jiang, ACS Appl. Nano Mater. 9, 9009 (2020).

    Article  Google Scholar 

  5. X.Y. Fan, T.H. Wu, Y. Yang, S.H. Li, Y. Li, T.F. Jiao, and J.M. Gu, Nanotechnology 28, 285403 (2020).

    Article  Google Scholar 

  6. X.Y. Zhang, Y. Zhang, Y.Y. Hu, Y.H. Lin, X. Li, S.S. Li, and T. Yang, JOM 74, 1849 (2022).

    Article  ADS  CAS  Google Scholar 

  7. M.C. Sun, M.F. Sun, H.X. Yang, W.H. Song, Y. Nie, and S.N. Sun, Ceram. Int. 1, 363 (2017).

    Article  Google Scholar 

  8. C.Z. Yuan, H.B. Wu, Y. Xie, and X.W. Lou, Angew. Chem. Int. Ed. 53, 1488 (2014).

    Article  CAS  Google Scholar 

  9. T. Li, A. Qin, L. Yang, J. Chen, Q. Wang, D. Zhang, and H. Yang, ACS App. Mater. Interfaces 9, 19900 (2017).

    Article  CAS  Google Scholar 

  10. Z.J. Jiang, S. Cheng, H. Rong, Z. Jiang, and J. Huan, J. Mater. Chem. A 5, 23641 (2017).

    Article  CAS  Google Scholar 

  11. Y.M. Qin, Z.Q. Jiang, L.P. Guo, J.L. Huang, and J. Zhong, Chem. Eng. J. 406, 126894 (2021).

    Article  CAS  Google Scholar 

  12. Y. Lu, L. Yu, and X.W. Lou, Chem 4, 972 (2018).

    Article  CAS  Google Scholar 

  13. X. Deng, Z. Chen, and Y. Cao, Mater. Today Chem. 9, 114 (2018).

    Article  CAS  Google Scholar 

  14. H. Liu, M. Jia, Q. Zhu, B. Cao, R. Chen, Y. Wang, F. Wu, and B. Xu, ACS Appl. Mater. Interfaces 8, 26878 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. J.H. Yun, J.H. Kim, P. Ragupathy, D.J. Kim, and D.K. Kim, J. Mater. Chem. A 9, 18260 (2021).

    Article  CAS  Google Scholar 

  16. S. Mehta, S. Jha, and H. Liang, Renew. Sustain. Energy Rev. 134, 110345 (2020).

    Article  CAS  Google Scholar 

  17. D. Zhang, W. Choi, Y. Oshima, U. Wiedwald, S.H. Cho, H.P. Lin, Y.K. Li, Y. Ito, and K. Sugioka, Nanomaterials-Basel 8, 631 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. J.G. Wang, D. Jin, R. Zhou, X. Li, X.R. Liu, C. Shen, K. Xie, B. Li, F. Kang, and B. Wei, ACS Nano 6, 6227 (2016).

    Article  Google Scholar 

  19. C.W. Park, E. Samuel, B. Joshi, T.G. Kim, and S.S. Yoon, Chem. Eng. J. 395, 125018 (2020).

    Article  CAS  Google Scholar 

  20. A. Sw, B. Yza, A. Xs, L.A. He, A. Jc, A. Yz, and A. Wh, Inorg. Chem. Commun. 121, 108188 (2020).

    Article  Google Scholar 

  21. L. Shi, Y. Li, F. Zeng, S. Ran, C. Dong, S.-Y. Leu, S.T. Boles, and K.H. Lam, Chem. Eng. J. 356, 107 (2019).

    Article  CAS  Google Scholar 

  22. D. Kong, C. Cheng, W. Ye, L. Bo, and H. Yang, J. Mater. Chem. A 30, 11800 (2016).

    Article  Google Scholar 

  23. T. Li, A. Qin, L. Yang, J. Chen, Q. Wang, D. Zhang, and H. Yang, ACS Appl. Mater. Interfaces 23, 19900 (2017).

    Article  Google Scholar 

  24. B. Lu, J. Liu, R. Hu, H. Wang, J. Liu, and M. Zhu, J. Mater. Chem. A 18, 8555 (2017).

    Article  Google Scholar 

  25. J. Chen, X. Wu, Y. Gong, P. Wang, W. Li, Q. Tan, and Y. Chen, Ceram. Int. 43, 4655 (2016).

    Article  Google Scholar 

  26. L.M. Xiao, Y.Y. Yang, J. Yin, Q. Li, and L.Z. Zhang, J. Power Sources 194, 1089 (2009).

    Article  ADS  CAS  Google Scholar 

  27. X. Li, S. Xiong, J. Li, X. Liang, J. Wang, J. Bai, and Y. Qian, Chem. Eur. J. 19, 11310 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. K. Zhong, X. Xin, B. Zhang, L. Hong, Z. Wang, and L. Chen, J. Power Sources 195, 3300 (2010).

    Article  ADS  CAS  Google Scholar 

  29. K. Zhong, B. Zhang, S. Luo, W. Wen, L. Hong, X. Huang, and L. Chen, J. Power Sources 196, 6802 (2011).

    Article  ADS  CAS  Google Scholar 

  30. S. Lou, Y. Zhao, J. Wang, G. Yin, C. Du, and X. Sun, Small 52, 1904740 (2019).

    Article  Google Scholar 

  31. C. Park, E. Samuel, B. Joshi, T. Kim, A. Aldalbahi, M. El-Newehy, W.Y. Yoon, and S.S. Yoon, Chem. Eng. J. 395, 125018 (2020).

    Article  CAS  Google Scholar 

  32. L.H. Yin, Y.J. Gao, I. Jeon, H. Yang, J. Kim, S.Y. Jeong, and C.R. Cho, Chem. Eng. J. 356, 60 (2019).

    Article  CAS  Google Scholar 

  33. Y.T. Chu, L.Y. Guo, B.J. Xi, Z.Y. Feng, F.F. Wu, Y. Lin, J.C. Liu, D. Sun, J.K. Feng, Y.T. Qian, and S.L. Xing, Adv. Mater. 30, 1704244 (2018).

    Article  Google Scholar 

  34. M.Y. Wang, Y. Huang, Y.D. Zhu, M. Yu, X.L. Qin, and H.M. Zhang, Compos. Part B 167, 668 (2019).

    Article  CAS  Google Scholar 

  35. K.Z. Cao, Y.H. Jia, S.D. Wang, K.J. Huang, and H.Q. Liu, J. Alloys Compounds 854, 157179 (2021).

    Article  CAS  Google Scholar 

  36. M.S. Wang, A.M. Peng, H. Xu, Z.L. Yang, L. Zhang, J. Zhang, H. Yang, J.C. Chen, Y. Huang, and X. Li, J. Power Sources 469, 228414 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Opening Project of Material Corrosion and Protection Key Laboratory of Sichuan province (2022CL08), The Open Fund Project from Southwest Petroleum University (2021KSZ05007) and the Guangxi Key Laboratory of Information Materials (Guilin University of Electronic Technology), PR China (211019-K).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhang.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 134 kb).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wu, W., Wang, Y. et al. Preparation of Fe2O3/Mn3O4/C Composites as High Performances Anode Materials for Lithium-Ion Batteries. JOM 76, 1192–1202 (2024). https://doi.org/10.1007/s11837-023-05749-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05749-y

Navigation