Skip to main content
Log in

Desulfurization by Adding Sodium Nitrate in the Production of Alumina from High-Sulfur Bauxite

  • Reducing CO2 Emissions from Bauxite to Aluminum Reduction
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The problem that sulfur causes in alumina production using the Bayer process can be eliminated by adding sodium nitrate, and, while the reaction mechanism is not perfect, this paper studies the reaction mechanism of sodium nitrate and different valence sulfurs in a sodium aluminate solution by combining thermodynamic calculations and experiments. Through thermodynamic analysis, it is deduced that sodium nitrate undergoes oxidation reactions with low valence sulfur (S2−, S2O32−, and SO32−) of different valence states in a sodium aluminate solution, while the oxidation effect of S2− is the most obvious. By studying the influence of the sodium nitrate dosage, oxidation time, and oxidation temperature on the different valence sulfurs in a sodium aluminate solution, it is concluded that S2− removal reaches 67.74% under the conditions of 3% sodium nitrate dosage, 260°Coxidation temperature, and 60-min oxidation time. However, the oxidation effect on S2O32− and SO32− is not obvious. The experimental results are consistent with the thermodynamic calculation results. Finally, the reaction mechanism of sodium nitrate with different valence sulfurs in a sodium aluminate solution is described in detail, which provides theoretical support for the desulfurization of high-sulfur bauxite in the production of alumina using the Bayer process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X.L. Hu, W.M. Chen, and Q.L. Xie, Sci. Direct 21, 1641–1647 (2021).

    Google Scholar 

  2. Z.W. Liu, H.W. Yan, W.H. Ma, K.Q. Xie, B.Q. Xu, and L.C. Zheng, Miner. Eng. 149, 106237 (2020).

    Article  Google Scholar 

  3. R. Padilla, D. Vega, and M.C. Ruiz, Hydrometallurgy 86(1–2), 80–88 (2007).

    Article  Google Scholar 

  4. Z.W. Liu, H.W. Yan, W.H. Ma, K.Q. Xie, B.Q. Xu, and P. Xiong, Miner. Eng. 173, 107234 (2021).

    Google Scholar 

  5. Q.L. Xie and W.M. Chen, Corros. Sci. 86, 252–260 (2014).

    Article  Google Scholar 

  6. J.J. Yuan, C.Y. Chen, J.Q. Li, B.L. Quan, Y.P. Lan, L.Z. Wang, H. Fu and J.X. Gai, Met. Basel 10, 1283 (2020).

    Google Scholar 

  7. B.L. Quan, J.Q. Li, and C.Y. Chen, Met. Basel 11, 753 (2021).

    Google Scholar 

  8. X.B. Li, S.W. Yu, N. Liu, Y.K. Chen, T.G. Qi, Q.S. Zhou, G.H. Liu, and Z.H. Peng, Hydrometallurgy 147, 73–78 (2014).

    Article  Google Scholar 

  9. X.B. Li, C.Y. Li, Q.S. Zhou, T.G. Qi, G.H. Liu, and Z.H. Peng, Int. J. Miner. Process. 137, 9–14 (2015).

    Article  Google Scholar 

  10. G.H. Liu, G.Y. Wu, W. Chen, X.B. Li, Z.H. Peng, Q.S. Zhou, and T.G. Qi, Hydrometallurgy 176, 253–259 (2018).

    Article  Google Scholar 

  11. X.L. Hu, W.M. Chen, and Q.L. Xie, J. Cent. South. Univ. 41(3), 852–858 (2010).

    Google Scholar 

  12. H.F. Wu, C.Y. Chen, J.Q. Li, Y.P. Lan, L.Z. Wang, B.L. Quan, H.X. Jun, and T. Nonferr, Met. Soc. 30(6), 1662–1673 (2020).

    Google Scholar 

  13. G. Bulut, F. Arslan, and S. Atak, Miner Metall. Proc. 21(2), 86–92 (2004).

    Google Scholar 

  14. W. Chimonyo, K.C. Corin, J.G. Wiese, and C.T. O’Connor, Miner. Eng. 110, 57–64 (2017).

    Article  Google Scholar 

  15. G.J. Liang, A.V. Nguyen, W.M. Chen, T.A.H. Nguyen, and S. Biggs, Eng. J. 334(pt1), 1034–1045 (2018).

    Google Scholar 

  16. K. Blight, D.E. Ralph, and S. Thurgate, Hydrometallurgy 58(3), 227–237 (2000).

    Article  Google Scholar 

  17. C. Owusu, K. Quast, and J. Addai-Mensah, Miner. Eng. 98, 127–136 (2016).

    Article  Google Scholar 

  18. X.Z. Gong, S.Y. Zhuang, L. Ge, Z. Wang, and M.Y. Wang, Ultrason. Sonochem. 139, 17–24 (2015).

    Google Scholar 

  19. X.Z. Gong, Z. Wang, S.Y. Zhuang, D. Wang, Y.H. Wang, and M.Y. Wang, Metall. Mater. Trans. 48(B), 726–732 (2017).

    Article  Google Scholar 

  20. X.Z. Gong, M.Y. Wang, Z. Wang, and Z.C. Guo, Fuel. Process. Technol. 99, 6–12 (2012).

    Article  Google Scholar 

  21. Z.W. Liu, W.H. Ma, H.W. Yan, K.Q. Xie, D.Y. Li, L.C. Zheng, and P.F. Li, Hydrometallurgy 179, 118–124 (2018).

    Article  Google Scholar 

  22. Z.W. Liu, D.Y. Li, W.H. Ma, H.W. Yan, K.Q. Xie, L.C. Zheng, and P.F. Li, Miner. Eng. 119, 76–81 (2018).

    Article  Google Scholar 

  23. P.F. Li, Z.W. Liu, H.W. Yan, and Y.F. He, Carpath. J. Earth. Environ. Sci. 252, 042037 (2019).

    Google Scholar 

  24. Z.W. Liu, W.M. Chen, and W.X. Li, JOM. 62(11), 32–34 (2010).

    Article  Google Scholar 

  25. X.B. Li, S.W. Yu, W.B. Dong, Y.K. Chen, Q.S. Zhou, T.G. Qi, G.H. Liu, Z.H. Peng, and Y.Y. Jiang, Hydrometallurgy 152, 183–189 (2015).

    Article  Google Scholar 

  26. J.Q. Li, R.K. Wang, and C.Y. Chen, Adv. Mater. 1096, 156–160 (2015).

    Google Scholar 

  27. J. Sun, X.H. Dai, Y.W. Liu, L. Peng, and B.J. Ni, Model. Evaluation. Chem. Environ. J. 309, 454–462 (2017).

    Google Scholar 

  28. Z. Xi, Z.X. Wang, X.H. Li, H.J. Guo, G.C. Yan, and J.X. Wang, Colloid Interf. Sci. 49(4), 1834–1840 (2018).

    Google Scholar 

  29. S.Y. Lin, R.Q. Liu, W.H. Li, W. Sun, and Y. Hu, J. Clean. Prod. 244, 118876 (2020).

    Article  Google Scholar 

  30. Z.C. Wang, P. Cui, and X.X. Tu, Environ. Protect. 29(4), 1–3 (2002).

    Google Scholar 

  31. Z.D. Chen, X.Z. Gong, Z. Wang, and J. Fuel, Chem. Tech. 41(8), 928–936 (2013).

    Google Scholar 

  32. X.Z. Gong, S.Y. Zhuang, L. Ge, and M.Y. Wang, Int. J. Miner. Process. 139, 17–24 (2015).

    Article  Google Scholar 

  33. J. Shangguan, Y.S. Zhao, and H.L. Fan, Fuel 108, 80–84 (2013).

    Article  Google Scholar 

  34. X. Peng, and L.Y. Jin, Light Metals 11, 14–17 (2010).

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support received from the National Natural Science Foundation of Chain (No. 22068021 and No. 52064030), Yunnan Major Scientific and Technological Projects (No. 202202AG050007), Yunnan Industrial Talent Project (YNQR-CYRC-2018-003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhanwei Liu or Hengwei Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Liu, Z., Yan, H. et al. Desulfurization by Adding Sodium Nitrate in the Production of Alumina from High-Sulfur Bauxite. JOM 75, 1649–1659 (2023). https://doi.org/10.1007/s11837-023-05744-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05744-3

Navigation