Skip to main content
Log in

Microstructure and Sliding Wear Characteristics of As-Cast and SiC Reinforced ZK60 Magnesium Alloy

  • Influence of Processing on Microstructure and Properties of Mg Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, the microstructure and sliding wear characteristics of the as-cast and SiC-reinforced ZK60 magnesium alloys were investigated. The microstructural evaluation confirmed nearly dense microstructure with homogeneous dispersion of the SiC particles within the matrix. The wear performance of the as-cast alloy and ZK60/SiC composites with 10 wt.% and 20 wt.% SiC were investigated by the pin-on-disk method using a 52,100 steel pin with 5 mm diameter at different applied loads in the range of 10–160 N. The results revealed that oxidation was the dominant wear mechanism at low loads, resulting in the slight wear rates of the composites and as-cast alloy. However, a rapid increase in the wear rate occurred by increasing the applied load to > 40 N owing to the change in wear mechanism from oxidation to abrasion and delamination. An obvious difference between the wear resistance of composites and unreinforced alloys was observed at high loads. The SiC particles in the composites strengthened the alloy and prohibited the crack nucleation and propagation at high loads. Moreover, by increasing the weight percentage of the reinforcement, the wear resistance of composite was enhanced because of the enhancement of composite hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Easton, A. Beer, M. Barnett, C. Davies, G. Dunlop, Y. Durandet, S. Blacket, T. Hilditch, and P. Beggs, JOM 60(11), 57–62 https://doi.org/10.1007/s11837-008-0150-8 (2008).

    Article  Google Scholar 

  2. X. Zhou, Q. Le, D. Li, H. Chenglu, T. Wang, Q. Liao, X. Li, R. Guo, C. Liu, and Y. Zhang, JOM 74(11), 4294–4304 https://doi.org/10.1007/s11837-022-05447-1 (2022).

    Article  Google Scholar 

  3. M. Gandara, Mater. Technol. 45, 633 (2011).

    Google Scholar 

  4. J. Song, J. Chen, X. Xiong, X. Peng, D. Chen, and F. Pan, J. Magnes. Alloys 10, 863 (2022).

    Article  Google Scholar 

  5. K. Kaviyarasan, R. Soundararajan, P. Seenuvasaperumal, A. Sathishkumar, and J.P. Kumar, Mater. Today Proc. 18, 4082–4091 https://doi.org/10.1016/j.matpr.2019.07.352 (2019).

    Article  Google Scholar 

  6. F. Mert, Met. Soc. China 27, 2598 (2017).

    Google Scholar 

  7. C. Taltavull, B. Torres, and A.J. López, J. Rams 301, 615 (2013).

    Google Scholar 

  8. A.J. López, P. Rodrigo, B. Torres, and J. Rams, Wear 271, 2836 (2011).

    Article  Google Scholar 

  9. L. Falcon-Franco, E. Bedolla-Becerril, J. Lemus-Ruiz, J.G. Gonzalez-Rodríguez, R. Guardian, and I. Rosales, Compos. Part B Eng. 42(2), 275–279 https://doi.org/10.1016/j.compositesb.2010.11.012 (2011).

    Article  Google Scholar 

  10. N.V. Ponraj, A. Azhagurajan, and S.C. Vettivel, Microstructure, Consolidation and Mechanical Behaviour of Mg/n-TiC Composite. Alexandria Eng. J. 55, 2077 (2016).

    Article  Google Scholar 

  11. M.J. Shen, X.J. Wang, M.F. Zhang, X.S. Hu, M.Y. Zheng, and K. Wu, Mater. Sci. Eng. A. 601, 58 (2014).

    Article  Google Scholar 

  12. S. García-Rodríguez, B. Torres, A. Maroto, A.J. López, E. Otero, and J. Rams, Wear 390–391, 1 (2017).

    Article  Google Scholar 

  13. C.Y.H. Lim, S.C. Lim, and M. Gupta, Wear 255, 629 (2003).

    Article  Google Scholar 

  14. Y. Yao, L. Jiang, G. Fu, and L. Chen, Met. Soc. China 25, 2543 (2015).

    Google Scholar 

  15. S.K. Moheimani, K. Azadeh, S. Khademzadeh, M. Tayebi, A. Rajaee, and A. Saboori, J. Magnes. Alloys 10, 3267 (2022).

    Article  Google Scholar 

  16. S. Banerjee, S. Poria, G. Sutradhar, and P. Sahoo, J. Magnes. Alloys 7, 315 (2019).

    Article  Google Scholar 

  17. N.M. Chelliah, H. Singh, and M.K. Surappa, J. Magnes. Alloys 4, 306 (2016).

    Article  Google Scholar 

  18. M. Moazami-Goudarzi, and F. Akhlaghi, Tribol. Int. 102, 28 (2016).

    Article  Google Scholar 

  19. J. Xie, J. Zhang, Z. Zhang, Q. Yang, K. Guan, Y. He, R. Wang, H. Zhang, X. Qiu, and R. Wu, Corros. Sci. 198, 110163 (2022).

    Article  Google Scholar 

  20. B.-J. Lv, S. Wang, T.-W. Xu, F. Guo, and J. Magnes, Alloy 9, 840 (2021).

    Google Scholar 

  21. J.D. Robson and C. Paa-Rai, Acta Mater. 95, 10 (2015).

    Article  Google Scholar 

  22. G. Gong, G. Huang, L. Huang, F. Pan, and B. Jiang, Tribol. Trans. 62(1), 1–7 (2019).

    Article  Google Scholar 

  23. X. Chen, L. Liu, and F. Pan, J. Wuhan Univ. Technol. Sci. Ed. 31, 393 (2016).

    Article  Google Scholar 

  24. H. Zhu, C. Luo, J. Liu, and D. Jiao, Trans. Nonferrous Met. Soc. China 24, 605 (2014).

    Article  Google Scholar 

  25. Z. Li, Z. Peng, Y. Qiu, K. Qi, Z. Chen, and X. Guo, J. Mater. Res. Technol. 9, 11201 (2020).

    Article  Google Scholar 

  26. S. Abdi, M. Ardestani, M. Tamizifar, and A. Abbasi, Iranian J. Mater. Forming 9, 47 (2022).

    Google Scholar 

  27. P.J. Blau and K.G. Budinski, Wear 225–229, 1159 (1999).

    Article  Google Scholar 

  28. J.F. Archard, J. Appl. Phys. 24, 981 (1953).

    Article  Google Scholar 

  29. H. Watanabe, K. Moriwaki, T. Mukai, T. Ohsuna, K. Hiraga, and K. Higashi, Mater. Trans. 44, 775 (2003).

    Article  Google Scholar 

  30. N.N. Aung, W. Zhou, and L.E.N. Lim, Wear 265, 780 (2008).

    Article  Google Scholar 

  31. J. An, R.G. Li, Y. Lu, C.M. Chen, Y. Xu, X. Chen, and L.M. Wang, Wear 265(1–2), 97–104 https://doi.org/10.1016/j.wear.2007.08.021 (2008).

    Article  Google Scholar 

  32. V.K.S. Jain and S. Muthukumaran, Mater. Trans. A 50(2933), 2933 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ardestani.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdi, S., Ardestani, M., Tamizifar, M. et al. Microstructure and Sliding Wear Characteristics of As-Cast and SiC Reinforced ZK60 Magnesium Alloy. JOM 75, 2314–2325 (2023). https://doi.org/10.1007/s11837-023-05739-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05739-0

Navigation