Skip to main content
Log in

A Comprehensive Review of Additively Manufactured H13 Tool Steel Applicable in the Injection Mold Industry: Applications, Designs, Microstructure, Mechanical Properties

  • 2D Materials – Preparation, Properties & Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Recently, additive manufacturing (AM) has demonstrated strong potential in critical industrial applications requiring high-performance mechanical behavior. The advantage of AM over subtractive methods lies in the flexibility of the manufacturer in producing complex geometries. The method is recommended for building complex conformal cooling channels for injection molds, which leads to efficient heat extraction, and consequently extends the fatigue life of the steel mold. This review paper will go over the most recent studies on injection molds made using AM methods. It is divided into three sections: the first section looks at studies on the design of cooling channels aimed at improving the temperature distribution inside the mold; in the second section, we present a detailed investigation of H13, the most common type of mold steel used in industry, including its microstructure and mechanical behavior; and in the third section, post-processing treatments to improve mechanical properties are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F.J. Shiou, and C.H. Chen, J. Mater. Process. Technol. 140, 248 (2003).

    Google Scholar 

  2. E.B. Fonseca, A.H.G. Gabriel, L.C. Araújo, P.L.L. Santos, K.N. Campo, and E.S.N. Lopes, Addit. Manuf 34, 101250 (2020).

    Google Scholar 

  3. Z. Wei, J. Wu, N. Shi, L. Li, Z. Wei, J. Wu, N. Shi, and L. Li, Math. Biosci. and Eng. 5, 5414 (2020).

    Google Scholar 

  4. G. Singh Phull, S. Kumar, and R. Walia, Int. J. Mech. Eng. Technol. (IJMET) 9, 1162 (2018).

    Google Scholar 

  5. G. Tosello, A. Charalambis, L. Kerbache, M. Mischkot, D.B. Pedersen, M. Calaon, and H.N. Hansen, Springer 100, 783 (2019).

    Google Scholar 

  6. C. Achillas, D. Tzetzis, and M.O. Raimondo, Int. J. Prod. Res. 55, 3497 (2017).

    Google Scholar 

  7. C. Yan, L. Hao, A. Hussein, and D. Raymont, Int. J. Mach. Tools Manuf. 62, 32 (2012).

    Google Scholar 

  8. N. Chantarapanich, A. Laohaprapanon, S. Wisutmethangoon, P. Jiamwatthanachai, P. Chalermkarnnon, S. Sucharitpwatskul, P. Puttawibul, and K. Sitthiseripratip, Rapid. Prototyp. J. 20, 551 (2014).

    Google Scholar 

  9. A. du Plessis, C. Broeckhoven, I. Yadroitsava, I. Yadroitsev, C.H. Hands, R. Kunju, and D. Bhate, Addit. Manuf. 27, 408 (2019).

    Google Scholar 

  10. D. Kang, S. Park, Y. Son, S. Yeon, S.H. Kim, and I. Kim, Mater. Des. 175, 107786 (2019).

    Google Scholar 

  11. A. Seharing, A.H. Azman, and S. Abdullah, Adv. Mech. Eng. 12, 1 (2020).

  12. V. Brøtan, O.Å. Berg, and K. Sørby, Procedia CIRP 54, 186 (2016).

    Google Scholar 

  13. C. Malca, C. Santos, M. Sena, and A. Mateus, Sci. Technol. Mater. 30, 13 (2018).

    Google Scholar 

  14. T. Wu, and A. Tovar, Rapid Prototyp J. 25, 1482 (2019).

    Google Scholar 

  15. G.R. Berger, D. Zorn, W. Friesenbichler, F. Bevc, and C.J. Bodor, Polym. Eng. Sci. 59, E180 (2019).

    Google Scholar 

  16. J.M. Mercado-Colmenero, C. Martin-Doñate, M. Rodriguez-Santiago, F. Moral-Pulido, and M.A. Rubio-Paramio, Int. J. Adv. Manuf. Technol. 102, 1719 (2019).

    Google Scholar 

  17. C. Tan, D. Wang, W. Ma, Y. Chen, S. Chen, Y. Yang, and K. Zhou, Mater. Des. 196, 109147 (2020).

    Google Scholar 

  18. P.A. Gruber, and D.A. de Miranda, Polímeros 30, 2020 (2020).

    Google Scholar 

  19. C.C. Kuo, and Z.F. Jiang, Int. J. Adv. Manuf. Technol. 104, 4169 (2019).

    Google Scholar 

  20. C.C. Kuo, and W.C. Xu, Int. J. Adv. Manuf. Technol. 98, 887 (2018).

    Google Scholar 

  21. A. Güldaş and M. Göktaş, International Symposium on Innovative Approaches in Scientific Studies (ISAS 2019) 4, 395 (2019).

  22. H.S. Park, X.P. Dang, D.S. Nguyen, and S. Kumar, Int. J. Precis. Eng. Manuf. - Green Technol. 7, 319 (2020).

    Google Scholar 

  23. F. Marin, J.R. de Miranda, and A.F. de Souza, Polym. Eng. Sci. 58, 552 (2018).

    Google Scholar 

  24. C.C. Kuo, Z.F. Jiang, X.Y. Yang, S.X. Chu, and J.Q. Wu, Int. J. Adv. Manuf. Technol. 107, 1223 (2020).

    Google Scholar 

  25. S. Marques, A.F. de Souza, J. Miranda, and I. Yadroitsau, Polímeros 25, 564 (2015).

    Google Scholar 

  26. C.C. Kuo, Z.F. Jiang, and J.H. Lee, Int. J. Adv. Manuf. Technol. 103, 2169 (2019).

    Google Scholar 

  27. Y. Wang, K.M. Yu, C.C.L. Wang, and Y. Zhang, Comput. Aided Des. 43, 1001 (2011).

    Google Scholar 

  28. B. Müller, R. Hund, R. Malek, and N. Gerth, IFIP Adv. Inf. Commun. Technol. 411, 124 (2013).

    Google Scholar 

  29. A. Armillotta, R. Baraggi, and S. Fasoli, Int. J. Adv. Manuf. Technol. 71, 573 (2014).

    Google Scholar 

  30. M. Sony, and S. Naik, Benchmarking 27, 2213 (2020).

    Google Scholar 

  31. P. Wołosz, A. Baran, and M. Polański, J. Alloys Compd. 823, 153840 (2020).

    Google Scholar 

  32. A. Bohlen, H. Freiße, M. Hunkel, and F. Vollertsen, Procedia CIRP 74, 192 (2018).

    Google Scholar 

  33. R. Mertens, B. Vrancken, N. Holmstock, Y. Kinds, J.P. Kruth, and J. van Humbeeck, Phys. Procedia 83, 882 (2016).

    Google Scholar 

  34. J. Lee, J. Choe, J. Park, J.H. Yu, S. Kim, I.D. Jung, and H. Sung, Mater. Charact. 155, 109817 (2019).

    Google Scholar 

  35. P. Laakso, T. Riipinen, A. Laukkanen, T. Andersson, A. Jokinen, A. Revuelta, and K. Ruusuvuori, Phys. Procedia 83, 26 (2016).

    Google Scholar 

  36. J.J. Yan, D.L. Zheng, H.X. Li, X. Jia, J.F. Sun, Y.L. Li, M. Qian, and M. Yan, J. Mater. Sci. 52, 12476 (2017).

    Google Scholar 

  37. M. Narvan, K.S. Al-Rubaie, and M. Elbestawi, Materials 12, 2284 (2019).

    Google Scholar 

  38. M. Zhao, C. Duan, and X. Luo, J. Las. Appl. 32 (2020).

  39. T. Kurzynowski, W. Stopyra, K. Gruber, G. Ziólkowski, B. Kuznicka, and E. Chlebus, Materials 12, 239 (2019).

    Google Scholar 

  40. M. Yonehara, T.T. Ikeshoji, T. Nagahama, T. Mizoguchi, M. Tano, T. Yoshimi, and H. Kyogoku, Int. J. Adv. Manuf. Technol. 110, 427 (2020).

    Google Scholar 

  41. M. Åsberg, G. Fredriksson, S. Hatami, W. Fredriksson, and P. Krakhmalev, Mater. Sci. Eng., A 742, 584 (2019).

    Google Scholar 

  42. I. Mutlu, E. Oktay, and S. Ekinci, Russ. J. Nondestr. Test. 49, 112 (2013).

    Google Scholar 

  43. M. Katancik, S. Mirzababaei, M. Ghayoor, and S. Pasebani, J. Alloys Compd. 849, 156319 (2020).

    Google Scholar 

  44. L. Xue, Adv. Laser Mater. Process. Technol. Res. Appl. 461, 1 (2018).

    Google Scholar 

  45. F. Lei, T. Wen, F. Yang, J. Wang, J. Fu, H. Yang, J. Wang, J. Ruan, and S. Ji, Materials 15, 2686 (2022).

  46. S. Shakerin, M. Sanjari, B.S. Amirkhiz, and M. Mohammadi, Mater Charact 170, 110728 (2020).

    Google Scholar 

  47. A.M. Vilardell, S.B. Hosseini, M. Åsberg, A. Dahl-Jendelin, P. Krakhmalev, C. Oikonomou, and S. Hatami, Mater. Sci. Eng., A 800, 140305 (2021).

    Google Scholar 

  48. J.F. Garcias, R.F. Martins, R. Branco, Z. Marciniak, W. Macek, C. Pereira, and C. Santos, Fatigue Fract. Eng. Mater. Struct. 44, 3384 (2021).

    Google Scholar 

  49. J. Yan, H. Song, Y. Dong, W.M. Quach, and M. Yan, Mater. Sci. Eng., A 773, 138845 (2020).

    Google Scholar 

  50. M. Pellizzari, B. AlMangour, M. Benedetti, S. Furlani, D. Grzesiak, and F. Deirmina, Theoret. Appl. Fract. Mech. 108, 102634 (2020).

    Google Scholar 

  51. R. Dörfert, J. Zhang, B. Clausen, H. Freiße, J. Schumacher, and F. Vollertsen, Addit. Manuf. 27, 217 (2019).

    Google Scholar 

  52. M. Mazur, P. Brincat, M. Leary, and M. Brandt, Int. J. Adv. Manuf. Technol. 93, 881 (2017).

    Google Scholar 

  53. M. Wang, Y. Wu, Q. Wei, and Y. Shi, Metals (Basel) 10, 116 (2020).

    Google Scholar 

  54. J. Li, Y. Shi, and X. Wu, Fatigue Fract. Eng. Mater. Struct. 41, 1260 (2018).

    Google Scholar 

  55. X. Tong, M.J. Dai, and Z.H. Zhang, Appl. Surf. Sci. 271, 373 (2013).

    Google Scholar 

  56. B. Liu, B. Wang, X. Yang, X. Zhao, M. Qin, and J. Gu, Appl. Surf. Sci. 483, 45 (2019).

    Google Scholar 

  57. C. Meng, Z. Tian, Y. Kang, X. Wang, K. Sheng, Z. Gao, H. Bao, and P. Dong, JOM 70, 2611 (2018).

    Google Scholar 

  58. M. Sarwar, R. Priestner, and E. Ahmad, J. Mater. Eng. Perform. 11, 274 (2002).

    Google Scholar 

  59. C.J. Chen, K. Yan, L. Qin, M. Zhang, X. Wang, T. Zou, and Z. Hu, J. Mater. Eng. Perform. 26, 5577 (2017).

    Google Scholar 

  60. F. Deirmina, N. Peghini, B. AlMangour, D. Grzesiak, and M. Pellizzari, Mater. Sci. Eng., A 753, 109 (2019).

    Google Scholar 

  61. G. Maistro, C. Oikonomou, S. B. Hosseini, and S. Brorson, Electron. J. SSRN 3785874 (2021).

  62. S. Kumar, S. R. Maity, and L. Patnaik, https://doi.org/10.1080/2374068X.2021.1927642 (2021).

  63. J. Zhang, M. Yu, Z. Li, Y. Liu, Q. Zhang, R. Jiang, and S. Sun, J. Alloys Compd. 856, 158168 (2021).

    Google Scholar 

  64. E. Maleki, S. Bagherifard, M. Bandini, and M. Guagliano, Addit. Manuf. 37, 101619 (2021).

    Google Scholar 

  65. L. Hackel, J.R. Rankin, A. Rubenchik, W.E. King, and M. Matthews, Addit. Manuf. 24, 67 (2018).

    Google Scholar 

  66. M. Hofele, J. Schanz, B. Burzic, S. Lutz, M. Merkel, and H. Riegel, Las. Manuf. LIM. (2017).

  67. M. Steinhauser, E. Sert, L. Hitzler, A. Öchsner, and M. Merkel, Pract. Metallogr. 57, 140 (2020).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narges Omidi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omidi, N., Farhadipour, P., Baali, L. et al. A Comprehensive Review of Additively Manufactured H13 Tool Steel Applicable in the Injection Mold Industry: Applications, Designs, Microstructure, Mechanical Properties. JOM 75, 4457–4469 (2023). https://doi.org/10.1007/s11837-023-05735-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05735-4

Navigation