Skip to main content

Advertisement

Log in

Impact of Particle Addition and Aging on the Friction Stir Processed Magnesium Matrix Surface Composite Properties

  • Solid-state Processing of Light Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The aim of this work is to develop magnesium matrix surface composite (MMSC) using the commercially pure magnesium (Mg) plate by friction stir processing (FSP) by adding β-tricalcium phosphate (TCP), Al and nano-Ca in various fractions. The as-processed MMSCs were also aged at 300°C for 60 min. The Mg2Ca phase is more thermally stable during the aging period than the β-phase. The maximum Young's modulus (E) was achieved in as-processed MMSC alloyed using Al and Ca and reinforced with TCP, and no significant deterioration was noted after aging. The hardness varied owing to the presence of β-phase, Mg2Ca and other phases. The as-processed MMSCs significantly improved the recovery of shape after plastic deformation than the pure Mg. Aging process further increases the recovery of shape and highest recovery was achieved in aged MMSC with Ca alloying and reinforced with TCP. The as-processed MMSCs reinforced with TCP and alloyed using Al and Ca demonstrated better corrosion resistance than the pure Mg. However, aged MMSCs are generally possess lower corrosion resistance than the Pure Mg. This study essentially showed how the FSP approach may impose a variable deterioration behavior on a static Mg characteristic to create controlled and customized biodegradable material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. M. Moravej and D. Mantovani, Int. J. Mol. Sci. 12, 4250 (2011).

    Article  Google Scholar 

  2. A. Tahmasebifar, S.M. Kayhan, Z. Evis, and M. Koç, J. Alloys Compd. 687, 906 (2016).

    Article  Google Scholar 

  3. B.D. Ratner, A. Hoffman, F. Schoen, and J. Lemons, Biomaterials Science: An Introduction to Materials in Medicine, 3rd edn. (Academic Press, Cambridge, 2012).

    Google Scholar 

  4. S. Wu, X. Liu, K.W.K. Yeung, H. Guo, C.Y. Chung, and P.K. Chu, Surf. Coat. Technol. 233, 13 (2012).

    Article  Google Scholar 

  5. Y.F. Zheng, X.N. Gu, and F. Witte, Mater. Sci. Eng. R 77, 1 (2014).

    Article  Google Scholar 

  6. L. Xu, F. Pan, G. Yu, L. Yang, E. Zhang, and K. Yang, Biomaterials 30, 1512 (2009).

    Article  Google Scholar 

  7. Z. Hussain, N. Mohd Isa, and B.K. Dhindaw, J. Powder Metal Min. 6, 179 (2017).

    Google Scholar 

  8. N. Sezer, Z. Evis, S. Kayhan, A. Tahmasebifar, and M. Koc, J. Magnes. Alloys 6, 23 (2018).

    Article  Google Scholar 

  9. J.M. Seitz, A. Lucas, and M. Kirschner, JOM 68, 1177 (2016).

    Article  Google Scholar 

  10. H.J. Maier, S. Julmi, S. Behrens, C. Klose, A.K. Gartzke, P. Wriggers, A.C. Waselau, and A.M. Lindenberg, JOM 72, 1859 (2020).

    Article  Google Scholar 

  11. S.F. Fischerauer, T. Kraus, X. Wu, S. Tangl, E. Sorantin, A.C. Hanzi, and J.F. Loffler, Acta Biomater. 9, 5411 (2013).

    Article  Google Scholar 

  12. G.S. Nayak, A. Carradò, P. Masson, G. Pourroy, F. Mouillard, V. Migonney, C.F. Daudre, C. Pereira, and H. Palkowski, JOM 74, 102 (2022).

    Article  Google Scholar 

  13. S. Koleini, M.H. Idris, and H. Jafari, Mater. Des. 33, 20 (2012).

    Article  Google Scholar 

  14. M.H. Idris, H. Jafari, S.E. Harandi, M. Mirshahi, and S. Koleyni, Adv. Mat. Res. 445, 301 (2012).

    Google Scholar 

  15. Y.S. Jeong and W.J. Kim, Corros. Sci. 82, 392 (2014).

    Article  Google Scholar 

  16. T. Hassel, F.W. Bach, and C. Krause, Influence of alloy composition on the mechanical and electrochemical properties of binary Mg-Ca alloys and its corrosion behavior in solutions at different chloride concentrations, in: Proceedings of the 7th International Conference on Magnesium Alloys and Their Applications, ed. by K.U. Kainer (Wiley-VCH Verlag GmbH & Co., Hoboken, NJ, 2007), pp. 789–795

  17. V. Sharma, U. Prakash, and B.V. Manoj Kumar, J. Mater. Process. Technol. 224, 117 (2015).

    Article  Google Scholar 

  18. W. Wang, P. Han, and P. Peng, Acta Metall. Sin. (Engl. Lett.) 33, 43 (2020).

    Article  Google Scholar 

  19. D. Qin, H. Shen, Z. Shena, H. Chena, and L. Fu, J. Manuf. Process. 36, 22 (2018).

    Article  Google Scholar 

  20. T. Hanas, T.S. Sampath Kumar, G. Perumal, M. Doble, and S. Ramakrishna, J. Mater. Process. Technol. 252, 398 (2018).

    Article  Google Scholar 

  21. P. Maji, R.K. Nath, R. Karmakar, D. Madapana, R.K. Bhogendro Meitei, and S.K. Ghosh, JOM 73, 4397 (2021).

    Article  Google Scholar 

  22. M. Sharifitabar, M. Kashefi, and H. Khorshain, Mater. Des. 108, 1 (2016).

    Article  Google Scholar 

  23. S.C. Jambagi and V.R. Malik, JOM 73, 4349 (2021).

    Article  Google Scholar 

  24. J.L. Murray, Bull. Alloy Phase Diagr. 3, 60 (1982).

    Article  Google Scholar 

  25. D.W. Zhou, J.S. Liu, P. Peng, L. Chen, and Y.J. Hu, Mater. Lett. 62, 206 (2008).

    Article  Google Scholar 

  26. Y. Hovanski, J.E. Carsley, K.D. Clarke, and P.E. Krajewski, JOM 67, 996 (2015).

    Article  Google Scholar 

  27. Z.Y. Ma, B.L. Xiao, J. Yang, and A.H. Feng, Mater. Sci. Forum 638–642, 1191 (2010).

    Article  Google Scholar 

  28. C.I. Chang, X.H. Du, and J.C. Huang, Scr. Mater. 57, 209 (2007).

    Article  Google Scholar 

  29. F. Wang, S.J. Sun, B. Yu, F. Zhang, P. Mao, and Z. Liu, Trans. Nonferrous Met. Soc. China 26, 203 (2016).

    Article  Google Scholar 

  30. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  Google Scholar 

  31. G.M. Pharr, J. Mater. Res. 17, 2660 (2002).

    Article  Google Scholar 

  32. F. Wen, N. Huang, H. Sun, J. Wang, and Y.X. Leng, Surf. Coat. Technol. 186, 118 (2004).

    Article  Google Scholar 

  33. M. Mukherjee and T.K. Pal, J. Appl. Electrochem. 43, 347 (2013).

    Article  Google Scholar 

  34. G.M. Gordon, Corrosion 58, 811 (2002).

    Article  Google Scholar 

  35. ASTM G102-89, Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements (ASTM International, West Conshohocken, 2015).

    Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge Dr. S. Prabhu, Professor, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India, for his continuous support. Authors would also like to acknowledge the Nanotechnology Research Centre (NRC), SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India, for SEM, Raman and XRD analysis.

Author information

Authors and Affiliations

Authors

Contributions

AR: Investigation, Formal analysis, Validation, Writing—original draft. MM: Conceptualization, Validation, Formal analysis, Investigation, Writing—review and editing. DD: Visualization, Methodology, Writing—review & editing. SD: Supervision, Resources, Validation, Writing—review & editing.

Corresponding author

Correspondence to Manidipto Mukherjee.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 675 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahul, A., Mukherjee, M., Das, D. et al. Impact of Particle Addition and Aging on the Friction Stir Processed Magnesium Matrix Surface Composite Properties. JOM 75, 2974–2988 (2023). https://doi.org/10.1007/s11837-023-05714-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05714-9

Navigation