Skip to main content
Log in

The Prediction of Remaining Useful Life of Aluminum Reduction Cells Based on Improved Hidden Semi-Markov Model

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

An improved prediction algorithm of the hidden semi-markov model (HSMM) is proposed to predict the remaining useful life (RUL) of aluminum reduction cells (ARC). First, the degradation process of the ARC is analyzed, and the parameters that could characterize its degradation process are determined. Second, to facilitate the prediction of HSMM, exponential distribution, in which form the dwell time in the traditional HSMM is distributed, is replaced with the Erlang distribution based on the queuing theory. Third, an improved forward recursion algorithm that introduced dwell time has not only simplified the calculation of useful life predictions but also further facilitated HSMM in the prediction of the RUL. Finally, verification is carried out using the actual data of an aluminum electrolytic industry, and the results showed that the improved HSMM performed better in the prediction and is more accurate than the existing prediction method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y.X. Liu, Modern Aluminum Electrolysis (Metallurgical Industry Press, Beijing, 2008), pp231–254.

    Google Scholar 

  2. R. Pelletier, C. Allaire, and O.-J. Siljan, JOM 53(8), 18 (2001).

    Article  Google Scholar 

  3. Y.W. Wang, J.P. Peng, and Y.Z. Din, JOM 70(9), 1877 (2018).

    Article  Google Scholar 

  4. H.T. Chen, B. Jiang, S.X. Ding, and B. Huang, IEEE Trans. Intell. Transp. Syst. 23(3), 1700 (2020).

    Article  Google Scholar 

  5. X. Yang, J.J. Gao, L.L. Li, H. Luo, S.X. Ding, and K.X. Peng, Automatica 122, 109246 (2020).

    Article  Google Scholar 

  6. A. Gheribi, M. Fini, L. Rivoaland, D. Lombard, G. Soucy, and P. Chartrand, Metall. Mater. Trans. B. 51(1), 161 (2020).

    Article  Google Scholar 

  7. S. Senanu, Z.H. Wang, and A.P. Ratvik, JOM 72(1), 21 (2020).

    Article  Google Scholar 

  8. Z. Fang, K. Zhang, and X.J. Lu, Trans. Nonferrous Met. Soc. China 23(6), 1847 (2013).

    Article  Google Scholar 

  9. W. Wang, and K. Sun, Russ. J. Nonferrous Met. 61(3), 241 (2020).

    Article  Google Scholar 

  10. J.R. Cui, W.H. Li, C.G. Su, B. Cao, R.Y. Huang, X. Yang, and Q. Li, Light Met. 11, 30 (in Chinese) (2021).

    Google Scholar 

  11. X. Yang, Y. Zhang, Y. Shardt, X.L. Li, J.R. Cui, and C.N. Tong, IEEE Trans. Control Syst. Technol. 28(6), 2523 (2020).

    Article  Google Scholar 

  12. R. Li, W. Verhagen, and R. Curran, Aerosp. Sci. Technol. 102, 105877 (2020).

    Article  Google Scholar 

  13. N. Omri, Z. Al Masry, N. Mairot, S. Giampiccolo, and N. Zerhouni, Comput. Ind. 127, 103414 (2021).

    Article  Google Scholar 

  14. Y.R. Yan, W.C. Lu, Z.W. Su, F.Q. Liu, L.M. Zhang, N.Y. Chen, J. Chin. Rare Earth Soc. 24(10), 218 (2006). (in Chinese)

  15. W.C. Yi, The Service Life Prediction of 300KA Prebaked Anode Aluminum Reduction Cell. North China University of Technology, Beijing, 08 May 2017. (in Chinese)

  16. D. Wang, X.D. Wang, and S.H. Lu, Symmetry 11(8), 1018 (2019).

    Article  Google Scholar 

  17. D.Y. Han, J.S. Yu, and D.Y. Tang, Qual. Eng. 33(2), 208 (2021).

    Article  Google Scholar 

  18. W.H. Yang, and L. Chen, Comput. Ind. Eng. 158, 107430 (2021).

    Article  Google Scholar 

  19. B. Carey, M. Dan, and A. Tarik, Mech. Syst. Signal Process. 14(4), 597 (2000).

    Article  Google Scholar 

  20. M. Dong, D. He, P. Banerjee, and J. Keller, Int. J. Adv. Manuf. Technol. 30(7/8), 738 (2006).

    Article  Google Scholar 

  21. X. Li, M. Viliam, H.F. Zuo, and J. Cai, Comput. Ind. Eng. 119, 21 (2018).

    Article  Google Scholar 

  22. T.J. Yang, Z.Y. Zheng, and L. Qi, Comput. Ind. 122, 103295 (2020).

    Article  Google Scholar 

  23. Q.M. Liu, D.G. Li, W.Y. Liu, T.B. Xia, and J.X. Li, Energies 14(24), 8208 (2021).

    Article  Google Scholar 

  24. The Nonferrous Metals Society of China, Code for Design of Aluminum Smelter Processes (China Jihua Press, Beijing, 2013), pp1–20. (in Chinese).

    Google Scholar 

  25. Y.H. Chen, C. Yi, X.L. Xie, M.Z. Hou, and Y.J. Cheng, Symmetry 12, 876 (2020).

    Article  Google Scholar 

  26. K. Li, and C.T. Li, Methodol. Comput. Appl. Probab. 21(1), 253 (2019).

    Article  MathSciNet  Google Scholar 

  27. A. Giacomo, L. Nikolai, and P. Enrica, Stoch. Process. Appl. 130(6), 3249 (2020).

    Article  Google Scholar 

  28. T. Chadza, K. Kyriakopoulos, and S. Lambotharan, Future Gener. Comput. Syst. 108, 636 (2020).

    Article  Google Scholar 

  29. Y.H. Zhao, X. Yang, X. Wu, J. Huang, and K.X. Peng, Adaptive Weighting Strategy based Multi-sensor Data Fusion Method for Condition Monitoring of Reciprocating Pump. Paper presented at the 12th CAA Symposium on Fault Detection, Supervision, and Safety for Technical Processes, Chengdu, China, 17–18 December 2021.

Download references

Acknowledgements

The authors gratefully acknowledgement the China Postdoctoral Science Foundation, Grant Number 2021M690798; Guizhou Province Science and Technology Plan Project, Grant Number [2021] General 085; Natural Science Foundation of China, Grant Number 62273033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Su, C., Li, X. et al. The Prediction of Remaining Useful Life of Aluminum Reduction Cells Based on Improved Hidden Semi-Markov Model. JOM 75, 2054–2063 (2023). https://doi.org/10.1007/s11837-023-05703-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05703-y

Navigation