Skip to main content

Advertisement

Log in

Study on the Electric Current Effects on the Microstructure and Properties of W-Mo-Cu Alloy Under the Action of Electric Field

  • Powder Materials and Processing for Extreme Environments
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, electric current effects on the densification, microstructure, and properties of W-Mo-Cu alloy fabricated by large current electric field sintering (LCS) were investigated. The apparent sintering activation energy for densification (ASAED) was calculated to decrease from 72.01  kJ/mol to 24.02 kJ/mol with the increased electric current from 30,000 A to 50,000 A, thereby enhancing the sinterability of the W-Mo-Cu mixed powder and improving the densification of W-Mo-Cu alloy. The experimental results also proved that the elevated electric current optimized the microstructure and properties of the W-Mo-Cu alloy. Moreover, XRD and TEM results suggested that electric current had a significant effect on the phase transformation of the alloy, while the varying electric current did not affect the phase type. Besides W, Mo, and Cu phases, the W-Mo-Cu alloy prepared by LCS contains three new phases, i.e., Cu0.4W0.6 intermetallic compound, Mo-Cu solid solution, and W-Mo solid solution, none of which are present in an equilibrium state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L.C. Zhuo, H.L. Wang, B. Luo, Y.H. Zhang, J.T. Xu, S.H. Liang, and Q.Q. Zhang, Adv. Eng. Mater. 22, 2000502. (2020)

    Article  Google Scholar 

  2. X.H. Yang, S.H. Liang, X.H. Wang, P. Xiao, and Z.K. Fan, Int. J. Refract. Met. Hard Mater. 28, 305. (2010)

    Article  Google Scholar 

  3. C. Aguilar, D. Guzman, P.A. Rojas, S. Ordoñez, and R. Rios, Mater. Chem. Phys. 128(3), 539. (2011)

    Article  Google Scholar 

  4. A. Sun, D. Wang, Z. Wu, L. Li, J. Wang, and B. Duan, Mater. Chem. Phys. 148(3), 494. (2014)

    Article  Google Scholar 

  5. L. Xu, C. Srinivasakannan, L.B. Zhang, M. Yan, J.H. Peng, H.Y. Xia, and S.H. Guo, J. Alloys Compd. 658, 23. (2016)

    Article  Google Scholar 

  6. Y. Xia, Y.Q. Song, S. Cui, C.G. Lin, and S.L. Han, Chin. J. Rare Metals. 32(2). (2008)

  7. H.L. Zhou, K.Q. Feng, Y.H. Xiao, Y.F. Liu, and S.X. Ke, J. Alloys Compd. 785, 965. (2019)

    Article  Google Scholar 

  8. H.L. Zhou, K.Q. Feng, S.X. Ke, and Y.F. Liu, J. Alloys Compd. 767, 567. (2018)

    Article  Google Scholar 

  9. S.X. Ke, K.Q. Feng, H.L. Zhou, and Y. Shui, J. Alloy. Comp. 775, 784. (2019)

    Article  Google Scholar 

  10. S.N. Alam, Mater. Sci. Eng. A 433, 161. (2006)

    Article  Google Scholar 

  11. F.A. Da Costa, A.G.P. Da Silva, and U.U. Gomes, Powder Technol. 134, 123. (2003)

    Article  Google Scholar 

  12. X.L. Zhou, Y.H. Dong, X.Z. Hua, Rafi-ud-din, and Z.G. Ye, Mater. Des. 31(3), 1603. (2010)

  13. A. Modal, A. Upadhyaya, and D. Agrawal, Mater. Res. Innov. 14(5), 355. (2010)

    Article  Google Scholar 

  14. J. Liu, Y. Yang, K.Q. Feng, and D. Lu, J. Alloys Compd. 476(1), 207. (2009)

    Google Scholar 

  15. K.Q. Feng, J. Xiong, and L. Sun, J. Alloys Compd. 504(1), 277. (2010)

    Article  Google Scholar 

  16. X. Zhou, K.Q. Feng, and S.F. Wei, Int. J. Refract. Met. Hard Mater. 31(2), 109. (2012)

    Article  Google Scholar 

  17. S.X. Ke, K.Q. Feng, H.L. Zhou, and Y. Shui, Mater. Manuf. Process. 32(2), 1398. (2017)

    Article  Google Scholar 

  18. F.M. Zhang, M. Reich, O. Kessler, and E. Burkel, Mater. Today 16(5), 192. (2013)

    Article  Google Scholar 

  19. S.F. Wei, K.Q. Feng, and H.S. Chen, J. Alloys Compd. 541, 186. (2012)

    Article  Google Scholar 

  20. H.L. Zhou, K.Q. Feng, Y. Li, S.X. Ke, and S. Yue, Adv. Eng. Sci. 49(Z2), 244. (2017)

    Google Scholar 

  21. J.M. Frei, U. Anselmi-Tamburini, and Z.A. Munir, J. Appl. Phys. 101(11), 114914. (2007)

    Article  Google Scholar 

  22. Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi, J. Mater. Sci. 41(3), 763. (2006)

    Article  Google Scholar 

  23. N. Bertolino, J.E. Garay, U. Anselmi-Tamburini, and Z.A. Munir, Philos. Mag. B 82(8), 969. (2002)

    Google Scholar 

  24. W. Chen, Gleeble system and application, 1st ed. (Gleeble System School, New York, NY, USA, 1998)

  25. K.L. Huang, Y. Yang, Y. Qin, and G. Yang, Int. J. Adv. Manuf. Technol. 69, 2651. (2013)

    Article  Google Scholar 

  26. F. Zuo, A. Badev, S. Saunier, D. Goeuriot, R. Heuguet, and S. Marinel, J. Eur. Ceram. Soc. 34(12), 3103. (2014)

    Article  Google Scholar 

  27. J. Wang and R. Raj, J. Am. Ceram. Soc. 73, 1172. (1990)

    Article  Google Scholar 

  28. J. Wang and R. Raj, J. Am. Ceram. Soc. 74(8), 1959. (1991)

    Article  Google Scholar 

  29. K.G. Ewsuk, D.T. Ellerby, and C.B. DiAntonio, J. Am. Ceram. Soc. 89(6), 2003. (2006)

    Article  Google Scholar 

  30. T. Liu, S. Zhu, and J.M. Tian, Cemented Carb. 28(01), 56. (2011)

    Google Scholar 

  31. D.G. Lin, J.S. Han, Y.S. Kwon, S. Ha, R. Bollina, and S.J. Park, Int. J. Refract. Met. Hard Mater. 53, 87. (2015)

    Article  Google Scholar 

  32. W.J. Wang, X.Y. Tan, S.P. Yang, L.M. Luo, X.Y. Zhu, Y.R. Mao, A. Litnovsky, J.W. Coenen, Ch. Linsmeier, and Y.C. Wu, Int. J. Refract. Met. Hard Mater. 98, 105552. (2021)

    Article  Google Scholar 

  33. G. Binling and W. Xikun, Solid-State Physics, 1st edn. (Tsinghua University Press, Beijing, 1989)

    Google Scholar 

  34. R.M. Young and R. Mcpherson, J. Am. Ceram. Soc. 72, 1080. (1989)

    Article  Google Scholar 

  35. M. Bengisu, and O.T. Inal, Ceram. Int. 17, 187. (1991)

    Article  Google Scholar 

  36. L.H. Liu, F. Li, N. Chen, H.M. Qiu, G.H. Cao, and Y. Li, Int. J. Miner. Metall. Mater. 22, 78. (2015)

    Article  Google Scholar 

  37. T. Mashimo, X.S. Huang, and S. Tashiro, J. Mater. Sci. Lett. 16, 1051. (1997)

    Article  Google Scholar 

  38. W.D. Callister, Fundamentals of materials science and engineering: an integrated approach (Wiley, New York, 2005)

    Google Scholar 

  39. M.H. Maneshian, A. Simchi, and Z.R. Hesabi, Mater. Sci. Eng. A 445, 86. (2007)

    Article  Google Scholar 

  40. Y.C. Zhai, Nonequilibrium thermodynamics (CSPM, Beijing, 2017)

  41. G.X. Hu, X. Cai, and Y.H. Rong, Fundamentals of materials science (Shanghai Jiao Tong University Press, Shanghai, 2001)

    Google Scholar 

  42. G.H. Liu, R.D. Li, T.C. Yuan, M. Zhang, and F.H. Zeng, Int. J. Refract. Met. Hard Mater. 66, 68. (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 51674171) and the Natural Science Foundation Project of Chongqing (Grant No. CSTB2022NSCQ-MSX1496).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongling Zhou.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest or known competing financial interests/personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 409 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, K., Zhou, H., Xiao, Y. et al. Study on the Electric Current Effects on the Microstructure and Properties of W-Mo-Cu Alloy Under the Action of Electric Field. JOM 75, 780–790 (2023). https://doi.org/10.1007/s11837-022-05626-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05626-0

Navigation