Skip to main content
Log in

Effect of Pre-aging on Microstructure and Mechanical Properties of Cryorolled AA2024 Sheets

  • Solid-state Processing of Light Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The strength and extent of elongation of AA2024 sheets should be improved to realize the fabrication of lightweight components. We prepared high-performance AA2024 strips following a combination of (low-temperature pre-aging + cryorolling + aging) processes and studied their mechanical properties and microstructures. The results showed that the ultimate tensile strength of the material prepared by this process reached 631 MPa, and 10% elongation could be achieved. The microstructure reveals that the process of pre-aging can significantly improve the dislocation density (~ 47.5%) after cryorolling and then improve the strength of the AA2024 sheets following the dislocation strengthening mechanism. It is also found that the cryorolled AA2024 sheets exhibit the \(\gamma \)-fiber texture, similar to asymmetric rolling. Finally, we calculated the yield strength increment of the material and discussed its strengthening source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y.L. Zhao, Z.Q. Yang, Z. Zhang, G.Y. Su, and X.L. Ma, Acta Mater. 61, 1624–1638 (2013).

    Article  Google Scholar 

  2. L. Sun, Y.Y. Guo, L. Chen, and G.Q. Zhao, J. Mater. Res. Tech. 12, 1126–1142 (2021).

    Article  Google Scholar 

  3. S. Guo, Z. Liu, S. Bai, L. Ou, J. Zhang, G. He, and J. Zhao, J. Alloy. Compd. 897, 163168 (2022).

    Article  Google Scholar 

  4. S.L. Liu, K.G. Luo, H. Gu, H.T. Gao, C. Kong, and H.L. Yu, Scr. Mater. 222, 115004 (2023).

    Article  Google Scholar 

  5. H.Q. Xiong, L.H. Su, C. Kong, and H.L. Yu, Adv. Eng. Mater. 23, 2001533 (2021).

    Article  Google Scholar 

  6. H.Q. Xiong, Y.X. Zhou, P. Yang, C. Kong, and H.L. Yu, Mater. Sci. Eng. A 853, 143764 (2022).

    Article  Google Scholar 

  7. X.C. Liu, H.W. Zhang, and K. Lu, Science 342, 337–340 (2013).

    Article  Google Scholar 

  8. S.K. Panigrahi, and R. Jayaganthan, J. Alloy. Compd. 509, 9609–9616 (2011).

    Article  Google Scholar 

  9. M. Weiss, A.S. Taylor, P.D. Hodgson, and N. Stanford, Acta Mater. 61, 5278–5289 (2013).

    Article  Google Scholar 

  10. K. Shi, X. Zhao, P. Zhang, J. Kuang, J. Zhang, G. Liu, and J. Sun, Chin. J. Nonferr. Met. 30, 2513–2525 (2020).

    Google Scholar 

  11. I. Morozova, A. Królicka, A. Obrosov, Y. Yang, N. Doynov, S. Weiß, and V. Michailov, Mater. Sci. Eng. A 852, 143617 (2022).

    Article  Google Scholar 

  12. Y. Zhou, M. Lin, C.Z. Liu, L. Wang, H. Chen, C.Y. Dan, S.M. Ma, Z. Chen, and H.W. Wang, J. Alloy. Compd. 913, 165172 (2022).

    Article  Google Scholar 

  13. Z.G. Chen, J.K. Ren, Z.G. Yuan, and S.P. Ringer, Mater. Sci. Eng. A 787, 139447 (2020).

    Article  Google Scholar 

  14. M.J. Styles, R.K.W. Marceau, T.J. Bastow, H.E.A. Brand, M.A. Gibson, and C.R. Hutchinson, Acta Mater. 98, 64–80 (2015).

    Article  Google Scholar 

  15. S. Cheng, Y.H. Zhao, Y.T. Zhu, and E. Ma, Acta Mater. 55, 5822–5832 (2007).

    Article  Google Scholar 

  16. J. Luo, H. Luo, S. Li, R. Wang, and Y. Ma, Mater. Des. 187, 108402 (2020).

    Article  Google Scholar 

  17. P. Xu, and H. Luo, Mater. Sci. Eng. A 675, 323–337 (2016).

    Article  Google Scholar 

  18. Y.F. Cao, L.T. Jiang, D. Gong, G.Q. Chen, Z.Y. Xiu, Y.M. Cheng, X.F. Wang, and G.H. Wu, J. Mater. Sci. Tech. 90, 85–94 (2021).

    Article  Google Scholar 

  19. M.J. Starink, and S.C. Wang, Acta Mater. 57, 2376–2389 (2009).

    Article  Google Scholar 

  20. F.L. Yu, Y. Zhang, C. Kong, and H.L. Yu, Mater. Sci. Eng. A 834, 142600 (2022).

    Article  Google Scholar 

  21. H.P. Dong, F. Guo, W.J. Huang, X.S. Yang, X.H. Zhu, H. Li, and L.Y. Jiang, Mater. Charact. 177, 111155 (2021).

    Article  Google Scholar 

  22. I.S. Zuiko, S. Mironov, and R. Kaibyshev, Mater. Sci. Eng. A 745, 82–89 (2019).

    Article  Google Scholar 

  23. T. Konkova, S. Mironov, A. Korznikov, and S.L. Semiatin, Acta Mater. 58, 5262–5273 (2010).

    Article  Google Scholar 

  24. F. Liu, Z.Y. Liu, G.Y. He, and L.N. Ou, J. Mater. Sci. Tech. 118, 1–14 (2022).

    Article  Google Scholar 

  25. L. Cao, Y.H. Xie, Y.F. Luo, J.M. Liang, J. Wang, D.L. Zhang, and L.M. Wang, Powder Metall. 64, 412–424 (2021).

    Article  Google Scholar 

  26. J.H. Dong, N. Gao, Y. Chen, L.F. Cao, H. Song, H. Fröck, B. Milkereit, and M.J. Starink, Mater. Sci. Eng. A 832, 142504 (2022).

    Article  Google Scholar 

  27. M. Basak, M.L. Rahman, M.F. Ahmed, B. Biswas, and N. Sharmin, J. Alloy. Compd. 895, 162694 (2022).

    Article  Google Scholar 

  28. M. Bignon, P. Shanthraj, and J.D. Robson, Acta Mater. 234, 118036 (2022).

    Article  Google Scholar 

  29. M.A. Quiroga, C. Macchi, and A. Somoza, Phys. Rev. Mater. 6, 033603 (2022).

    Article  Google Scholar 

  30. S. Abis, M. Massazza, P. Mengucci, and G. Riontino, Scr. Mater. 45, 685–691 (2001).

    Article  Google Scholar 

  31. Z.G. Chen, J.L. He, Y.Y. Zheng, and C.H. Lu, Mater. Sci. Eng. A 841, 142869 (2022).

    Article  Google Scholar 

  32. Y. Chen, N. Gao, G. Sha, S.P. Ringer, and M.J. Starink, Mater. Sci. Eng. A 627, 10–20 (2015).

    Article  Google Scholar 

  33. Z.Q. Feng, X. Luo, Y.X. Chen, N. Chen, L. Zhang, G.L. Wu, and X.X. Huang, Mater. Sci. Eng. A 771, 138486 (2020).

    Article  Google Scholar 

  34. O.R. Myhr, T. Børvik, C.D. Marioara, S. Wenner, and O.S. Hopperstad, Mech. Mater. 151, 103603 (2020).

    Article  Google Scholar 

  35. A. Duckham, R.D. Knutsen, and O. Engler, Acta Mater. 49, 2739–2749 (2001).

    Article  Google Scholar 

  36. S.H. Mousavi Anijdan, D. Sadeghi-Nezhad, H. Lee, W. Shin, N. Park, M.J. Nayyeri, H.R. Jafarian, and A.R. Eivani, J. Mater. Res. Tech. 13, 798–807 (2021).

    Article  Google Scholar 

  37. I.S. Zuiko, and R. Kaibyshev, Mater. Sci. Eng. A 781, 139148 (2020).

    Article  Google Scholar 

  38. P. Ying, Z. Liu, S. Bai, J. Wang, J. Li, M. Liu, and L. Xia, Mater. Sci. Eng. A 707, 412–418 (2017).

    Article  Google Scholar 

  39. M. Gazizov, and R. Kaibyshev, Mater. Sci. Eng. A 625, 119–130 (2015).

    Article  Google Scholar 

  40. D. Shao, P. Zhang, J.Y. Zhang, G. Liu, R.H. Wang, W.Q. Liu, G. Sha, and J. Sun, Metall. Mater. Trans. A 48, 4121–4134 (2017).

    Article  Google Scholar 

  41. N.D. Alexopoulos, Z. Velonaki, C.I. Stergiou, and S.K. Kourkoulis, Mater. Sci. Eng. A 700, 457–467 (2017).

    Article  Google Scholar 

  42. I. Zuiko, and R. Kaibyshev, Mater. Sci. Eng. A 737, 401–412 (2018).

    Article  Google Scholar 

  43. H. Kim, H. Ha, J. Lee, S. Son, H.S. Kim, H. Sung, J.B. Seol, and J.G. Kim, Mater. Sci. Eng. A 810, 141020 (2021).

    Article  Google Scholar 

  44. Y. Chen, N. Gao, G. Sha, S.P. Ringer, and M.J. Starink, Acta Mater. 109, 202–212 (2016).

    Article  Google Scholar 

  45. T. Masuda, X. Sauvage, S. Hirosawa, and Z. Horita, Mater. Sci. Eng. A 793, 139668 (2020).

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the National Key Research and Development Program (grant no. 2019YFB2006500), the High-tech Industry Technology Innovation Leading Plan of Hunan Province (grant no. 2020GK2032), the Innovation Driven Program of CSU (no. 2019CX006), and the Research Fund of the Key Laboratory of High Performance Complex Manufacturing at CSU for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailiang Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Xiong, H., Jiang, J. et al. Effect of Pre-aging on Microstructure and Mechanical Properties of Cryorolled AA2024 Sheets. JOM 75, 2935–2948 (2023). https://doi.org/10.1007/s11837-022-05616-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05616-2

Navigation