Skip to main content
Log in

Study on the Friction Stir Extrusion Process of AA1050 Aluminum Alloy Wires Using Numerical Modelling and Taguchi Method

  • Solid-state Processing of Light Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, a numerical model was presented for the friction stir extrusion process as a new method to produce wire from AA1050 aluminum alloy. First, the proposed model was developed using the commercial simulation package “3D DEFORM” based on finite element analysis and Lagrangian implicit solver. Subsequently, the model was validated against experimental temperature measurements. Moreover, Taguchi experiment design method and standard L9 orthogonal array were used to investigate the effect of process parameters on the obtained outputs. Input variables included rotational speed (RS), plunge rate (PR) and extrusion hole diameter (EHD), while output variables were density, temperature, strain rate and Zener-Hollomon. The results showed that the numerical analysis was in a good agreement with the experimental method for temperature and density. The most effective parameter in the study was rotational speed (55%). However, the plunge rate exhibited the lowest influence on the process. The highest relative density (0.9961) was obtained at RS = 800 rpm and PR = 20 mm/min. The highest temperature (528°C) and strain rate (38 s−1) were also found at RS = 1000 rpm, PR = 20 mm/min and EHD = 5 mm. Furthermore, the grain size from the center to the outside region of the produced wire was decreased with increasing Zener-Hollomon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.K. Padamata, A. Yasinskiy, and P. Polyakov, JOM 73, 2603 (2021).

    Article  Google Scholar 

  2. A. Kudyba, S. Akhtar, I. Johansen, and J. Safarian, JOM 73, 2625 (2021).

    Article  Google Scholar 

  3. F. Abu-Farha, In International Manufacturing Science and Engineering Conference, (American Society of Mechanical Engineers: 2012), pp 199–207.

  4. K.B.M. Ahmad, K.J. Shahbazi, and M.M. Sheikhi, Soc. Manuf. Eng. Iran 3, 34 (2016).

    Google Scholar 

  5. H.A. Derazkola, F. Khodabakhshi, and A. Gerlich, J. Manuf. Process. 58, 724 (2020).

    Article  Google Scholar 

  6. H.A. Derazkola, F. Khodabakhshi, and A. Gerlich, J. Market. Res. 9, 15273 (2020).

    Google Scholar 

  7. Z. Zhang and H. Zhang, Int. J. Adv. Manuf. Technol. 72, 1647 (2014).

    Article  Google Scholar 

  8. G. Buffa, J. Hua, R. Shivpuri, and L. Fratini, Mater. Sci. Eng. A 419, 389 (2006).

    Article  Google Scholar 

  9. M. Assidi, L. Fourment, S. Guerdoux, and T. Nelson, Int. J. Mach. Tools Manuf. 50, 143 (2010).

    Article  Google Scholar 

  10. P.A. Colegrove and H.R. Shercliff, J. Mater. Process. Technol. 169, 320 (2005).

    Article  Google Scholar 

  11. Y. Xie, X. Meng, and Y. Huang, Weld. J. 101, 144 (2022).

    Article  Google Scholar 

  12. Y. Xie, X. Meng, and Y. Huang, Weld. J 101, 172 (2022).

    Article  Google Scholar 

  13. Y. Huang, Y. Xie, X. Meng, J. Li, and L. Zhou, J. Mater. Sci. Technol. 35, 1261 (2019).

    Article  Google Scholar 

  14. Y. Huang, Y. Xie, X. Meng, Z. Lv, and J. Cao, J. Mater. Process. Technol. 252, 233 (2018).

    Article  Google Scholar 

  15. M.A. Ansari, R.A. Behnagh, M. Narvan, E.S. Naeini, M.K.B. Givi, and H. Ding, Trans. Indian Inst. Met. 69, 1351 (2016).

    Article  Google Scholar 

  16. R.A. Behnagh, N. Shen, M.A. Ansari, M. Narvan, M.K. Besharati Givi, and H. Ding, J. Manuf. Sci. Eng. 138, 1 (2016).

    Article  Google Scholar 

  17. H. Zhang, X. Zhao, X. Deng, M.A. Sutton, A.P. Reynolds, S.R. McNeill, and X. Ke, Int. J. Mech. Sci. 85, 130 (2014).

    Article  Google Scholar 

  18. H. Zhang, X. Li, W. Tang, X. Deng, A.P. Reynolds, and M.A. Sutton, J. Mater. Process. Technol. 221, 21 (2015).

    Article  Google Scholar 

  19. G. Buffa, J. Hua, R. Shivpuri, and L. Fratini, Mater. Sci. Eng., A 419, 381 (2006).

    Article  Google Scholar 

  20. C. Chang, C. Lee, and J. Huang, Scr. Mater. 51, 509 (2004).

    Article  Google Scholar 

  21. S. Xu, N. Matsumoto, S. Kamado, T. Honma, and Y. Kojima, Scr. Mater. 61, 249 (2009).

    Article  Google Scholar 

  22. B. Shaik, G.H. Gowd, B.D. Prasad and P.S. Ali, Intelligent Manufacturing and Energy Sustainability, (Springer, 2022), pp 539–548.

  23. A. Trivedi, N. Jhaveri, M. Gor and P. Sahlot, Recent Advances in Mechanical Infrastructure, 427–436 (2022).

  24. A.Y. Shash, M.H. El-Moayed, M. Abd Rabou, and M.G. El-Sherbiny, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 236, 8392 (2022).

    Article  Google Scholar 

  25. P. Asadi and M. Akbari, Int. J. Adv. Manuf. Technol. 116, 3231 (2021).

    Article  Google Scholar 

  26. D. Baffari, G. Buffa, and L. Fratini, J. Mater. Process. Technol. 247, 1 (2017).

    Article  Google Scholar 

  27. G. Buffa, M. Cammalleri, D. Campanella, and L. Fratini, Mater. Des. 82, 238 (2015).

    Article  Google Scholar 

  28. S. Kumaraswamy, V. Malik, S. Devaraj, V.K. Jain, and L. Avinash, Mater. Today Proc. 45, 299 (2021).

    Article  Google Scholar 

  29. S. Shima and M. Oyane, Int. J. Mech. Sci. 18, 285 (1976).

    Article  Google Scholar 

  30. G. Jamali and R. Jamaati, Modares Mech. Eng. 17, 176 (2018).

    Google Scholar 

  31. M.A. Ansari, E. Sadeqzadeh Naeini, M.K. Besharati Givi, and G. Faragi, Modares Mech. Eng. 15, 346 (2015).

    Google Scholar 

  32. G. Buffa, S. Pellegrino, and L. Fratini, J. Mater. Process. Technol. 214, 2102 (2014).

    Article  Google Scholar 

  33. C.T. Canaday, M.A. Moore, W. Tang, and A.P. Reynolds, Mater. Sci. Eng. A 559, 678 (2013).

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Abedinzadeh.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleimanipour, M., Abedinzadeh, R., Heidari, A. et al. Study on the Friction Stir Extrusion Process of AA1050 Aluminum Alloy Wires Using Numerical Modelling and Taguchi Method. JOM 75, 2909–2923 (2023). https://doi.org/10.1007/s11837-022-05604-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05604-6

Navigation