Skip to main content
Log in

Development of Cost-Effective Microstructure and Isothermal Oxidation-Resistant Bond Coats on Inconel 718 by Atmospheric Plasma-Sprayed NiCoCrAlFe High-Entropy Alloy

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Ni-based superalloy (Inconel 718) has been widely employed in aircraft, gas turbine engines, and turbocharger rotor equipment, due to its high strength and long fatigue life, but inadequate oxidation resistance has restricted high-temperature applications. In the current study, a NiCoCrAlFe high-entropy alloy (HEA) coating was fabricated on Inconel 718 using low energy ball-milled/blended elemental powders thermally sprayed by an atmospheric plasma spraying process. The microstructural and isothermal oxidation behavior of the NiCoCrAlFe HEA bond coats at 1000°C was studied. The result revealed that the microstructure of the HEA coatings consists of dark and light phases in the lamellar structure. The dark phases are relatively hard and are oxides, while the soft phase is the HEA phases spread in the microstructure. The novel NiCoCrAlFe high-entropy bond coat exhibits a considerably low oxidation rate and slow (Al2O3) TGO formation on the surface of the bond coats at elevated temperatures and exposure for extended durations. In conclusion, the present study provides a workable approach for enhancing the oxidation resistance of Inconel 718 alloy in high-temperature conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X. Jun, C.-M. Cao, G. Ping, and L.-M. Peng, Trans. Nonferr. Metal Soc. 30, 746. https://doi.org/10.1016/S1003-6326(20)65250-5 (2020).

    Article  Google Scholar 

  2. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Adv. Eng. Mater. 6, 299. https://doi.org/10.1002/adem.200300567 (2004).

    Article  Google Scholar 

  3. B. Cantor, I. Chang, P. Knight, and A. Vincent, Mater. Sci. Eng. A 375, 213. https://doi.org/10.1016/j.msea.2003.10.257 (2004).

    Article  Google Scholar 

  4. J. Yu, X. Lin, J. Wang, J. Chen, and W. Huang, Appl. Surf. Sci. 255, 9032. https://doi.org/10.1016/j.apsusc.2009.06.087 (2009).

    Article  Google Scholar 

  5. Z. Li, S. Zhao, R.O. Ritchie, and M.A. Meyers, Prog. Mater. Sci 102, 296. https://doi.org/10.1016/j.pmatsci.2018.12.003 (2019).

    Article  Google Scholar 

  6. H. Diao, X. Xie, F. Sun, K.A. Dahmen and P.K. Liaw, HEA 181–236 (2016). doi:https://doi.org/10.1007/978-3-319-27013-5_6

  7. G.-H. Meng, B.-Y. Zhang, H. Liu, G.-J. Yang, T. Xu, C.-X. Li, and C.-J. Li, Surf. Coat. Technol. 347, 54. https://doi.org/10.1016/j.surfcoat.2018.04.068 (2018).

    Article  Google Scholar 

  8. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Prog. Mater. Sci 61, 1. https://doi.org/10.1016/j.pmatsci.2013.10.001 (2014).

    Article  Google Scholar 

  9. X.-W. Qiu, Y.-P. Zhang, L. He, and C.-G. Liu, J. Alloys Compd. 549, 195. https://doi.org/10.1016/j.jallcom.2012.09.091 (2013).

    Article  Google Scholar 

  10. Z. Cui, Z. Qin, P. Dong, Y. Mi, D. Gong, and W. Li, Mater. Lett. 259, 126769. https://doi.org/10.1016/j.matlet.2019.126769 (2020).

    Article  Google Scholar 

  11. A. Erdogan, and K.M. Doleker, Trans Nonferr Metal Soc 31, 2428. https://doi.org/10.1016/S1003-6326(21)65664-9 (2021).

    Article  Google Scholar 

  12. M. Кandeva, E. Zadorozhnaya, Z. Kalitchin, and P. Svoboda, J. Balk. Tribol. Assoc. 24, 411. (2018).

    Google Scholar 

  13. T. Sidhu, S. Prakash, and R. Agrawal, Acta Mater. 54, 773. https://doi.org/10.1016/j.actamat.2005.10.009 (2006).

    Article  Google Scholar 

  14. M. Srivastava, M. Jadhav, R. Chakradhar, M. Muniprakash, and S. Singh, Surf. Coat. Technol. 378, 124950. https://doi.org/10.1016/j.surfcoat.2019.124950 (2019).

    Article  Google Scholar 

  15. C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, and S.L. Sing, Appl. Phys. Rev. 2, 041101. https://doi.org/10.1063/1.4935926 (2015).

    Article  Google Scholar 

  16. J. Lapin, T. Pelachová, and M. Dománková, Intermetallics (Barking) 95, 24. https://doi.org/10.1016/j.intermet.2018.01.013 (2018).

    Article  Google Scholar 

  17. Y.-J. Xie, and M.-C. Wang, Surf. Coat. Technol. 201, 3564. https://doi.org/10.1016/j.surfcoat.2006.08.107 (2006).

    Article  Google Scholar 

  18. L. Pawlowski, The science and engineering of thermal spray coatings (Wiley, London, 2008).

    Book  Google Scholar 

  19. W. Ruijun, Q. Yiyu, and L. Jun, Appl. Surf. Sci. 240, 42. https://doi.org/10.1016/j.apsusc.2004.05.299 (2005).

    Article  Google Scholar 

  20. G. Kirik, O. Gaponova, V. Tarelnyk, O. Myslyvchenko, and B. Antoszewski, Powder Metall. Met. Ceram. 56, 688. https://doi.org/10.1007/s11106-018-9944-6 (2018).

    Article  Google Scholar 

  21. C. Wu, S. Zhang, C. Zhang, J. Chen, and S. Dong, Opt Laser Technol. 94, 68. https://doi.org/10.1016/j.optlastec.2017.03.023 (2017).

    Article  Google Scholar 

  22. G. Jin, Z. Cai, Y. Guan, X. Cui, Z. Liu, Y. Li, and M. Dong, Appl. Surf. Sci. 445, 113. https://doi.org/10.1016/j.apsusc.2018.03.135 (2018).

    Article  Google Scholar 

  23. B. Gill, and R. Tucker, Mater. Sci. 2, 207. https://doi.org/10.1179/mst.1986.2.3.207 (1986).

    Article  Google Scholar 

  24. P. Fauchais, M. Vardelle, A. Vardelle, and L. Bianchi, Ceram. Int. 22, 295. https://doi.org/10.1016/0272-8842(95)00106-9 (1996).

    Article  Google Scholar 

  25. M. Löbel, T. Lindner, C. Kohrt and T. Lampke, In IOP Conference Series: Mater. Sci. Eng. (IOP Publishing: 2017), p. 012015. https://doi.org/10.1088/1757-899X/181/1/012015

  26. J.-K. Xiao, H. Tan, Y.-Q. Wu, J. Chen, and C. Zhang, Surf. Coat. Technol. 385, 125430. https://doi.org/10.1016/j.surfcoat.2020.125430 (2020).

    Article  Google Scholar 

  27. N. Tan, Z.-G. Xing, X.-L. Wang, H.-D. Wang, G. Jin, and B.-S.J. Xu, J. Mater. Res. 32, 1682. https://doi.org/10.1557/jmr.2017.164 (2017).

    Article  Google Scholar 

  28. C. Chen, N. Liu, J. Zhang, J. Cao, L. Wang, and H. Xiang, J Mater Sci Technol. 35, 1883. https://doi.org/10.1080/02670836.2019.1652785 (2019).

    Article  Google Scholar 

  29. N.K. Adomako, J.H. Kim, and Y.T. Hyun, J. Therm. Anal. Calorim. 133, 13. https://doi.org/10.1007/s10973-018-6963-y (2018).

    Article  Google Scholar 

  30. K. Mehmood, M.A. Umer, A.U. Munawar, M. Imran, M. Shahid, M. Ilyas, R. Firdous, H. Kousar, and M. Usman, Materials 15, 1486. https://doi.org/10.3390/ma15041486 (2022).

    Article  Google Scholar 

  31. A.S. Ang, C.C. Berndt, M.L. Sesso, A. Anupam, P.S.R.S. Kottada and B. Murty, Comparison of Plasma Sprayed High Entropy Alloys with Conventional Bond Coat Materials. Paper presented at International Thermal Spray Conference, Long Beach, California, USA, 11–14 May 2015. https://doi.org/10.31399/asm.cp.itsc2015p0027

  32. M. Kumar, M. Das, J.D. Majumdar, and I. Manna, Surf. Coat. Technol. 402, 126345. https://doi.org/10.1016/j.surfcoat.2020.126345 (2020).

    Article  Google Scholar 

  33. K.M. Döleker, A. Erdogan, T. Yener, A.C. Karaoglanlı, O. Uzun, M.S. Gök, and S. Zeytin, Surf. Coat. Technol. 412, 127069. https://doi.org/10.1016/j.surfcoat.2021.127069 (2021).

    Article  Google Scholar 

  34. A.S.M. Ang, C.C. Berndt, M.L. Sesso, A. Anupam, S. Praveen, R.S. Kottada, and B. Murty, Metall Mater Trans A Phys Metall Mater Sci. 46, 791. https://doi.org/10.1007/s11661-014-2644-z (2015).

    Article  Google Scholar 

  35. A. Meghwal, A. Anupam, V. Luzin, C. Schulz, C. Hall, B. Murty, R.S. Kottada, C.C. Berndt, and A.S.M.J. Ang, J. Alloys Compd. 854, 157140. https://doi.org/10.1016/j.jallcom.2020.157140 (2021).

    Article  Google Scholar 

  36. S.W. Rukhande, and W.S. Rathod, Ceram. Int. 46, 18498. https://doi.org/10.1016/j.ceramint.2020.04.155 (2020).

    Article  Google Scholar 

  37. T. Butler, J. Alfano, R. Martens, and M. Weaver, JOM 67, 246. https://doi.org/10.1007/s11837-014-1185-7 (2015).

    Article  Google Scholar 

  38. M. Imran, Z. Saeed, M. Pervaiz, K. Mehmood, R. Ejaz, U. Younas, H.A. Nadeem, S. Hussain, and B. Spectroscopy, Spectrochim. Acta A Mol. Biomol. Spectrosc. 255, 119644. https://doi.org/10.1016/j.saa.2021.119644 (2021).

    Article  Google Scholar 

  39. D.-Y. Lin, N.-N. Zhang, B. He, B.-Q. Jin, Y. Zhang, D.-Y. Li, and F.-Y. Dong, J. Iron Steel Res. Int. 24, 1199. https://doi.org/10.1016/S1006-706X(18)30018-9 (2017).

    Article  Google Scholar 

  40. H. Grewal, H. Singh, and A. Agrawal, Surf. Coat. Technol. 216, 78. https://doi.org/10.1016/j.surfcoat.2012.11.029 (2013).

    Article  Google Scholar 

  41. L. Baiamonte, C. Bartuli, F. Marra, A. Gisario, and G. Pulci, Coatings 9, 347. https://doi.org/10.3390/coatings9060347 (2019).

    Article  Google Scholar 

  42. N. Arshad, M. Imran, M. Akram, and F. Altaf, Port. Electrochimica Acta 40(3), 193. https://doi.org/10.4152/pea.2022400304 (2022).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kashif Mehmood.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehmood, K., Imran, M., Ali, L. et al. Development of Cost-Effective Microstructure and Isothermal Oxidation-Resistant Bond Coats on Inconel 718 by Atmospheric Plasma-Sprayed NiCoCrAlFe High-Entropy Alloy. JOM 75, 239–247 (2023). https://doi.org/10.1007/s11837-022-05578-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05578-5

Navigation