Skip to main content
Log in

Microstructure and Tribological Performance of Electrodeposited Cr Coating with Trivalent–Chromium Electrolyte

  • Advances in Surface Engineering
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A chromium (Cr) coating was fabricated on 45 steel by electrodeposition with a trivalent–chromium (Cr3+) electrolyte. The morphologies and element distributions of the obtained coating were analyzed using a scanning electronic microscope, energy dispersive spectrometer, atomic force microscope, x-ray diffraction, and x-ray photoelectron spectroscopy. The effects of normal load and sliding speed on the tribological performance of the Cr coating were analyzed using a friction tester. The results show that the Cr coating with the roughness of 85.5 nm is composed of the Cr phase. The average coefficients of friction (COFs) of the Cr coating under the normal loads of 1 N, 3 N, and 5 N are decreased from 1.08 to 0.69, exhibiting excellent friction reduction; while its wear rates increase with the increase of the normal load, and the wear resistance becomes poor. Moreover, the average COFs of Cr coating at the sliding speeds of 600 times/min, 700 times/min, and 800 times/min are in the range of 0.71–0.76, and the wear rate is the lowest at the sliding speed of 700 times/min, showing that the friction reduction under the normal load of 3 N and wear resistance at the sliding speed of 700 times/min are the best.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X.K. Li, R. Wang, Z. Xin, Y.J. Dong, J.H. Xu, and D.Q. Wei, Mater. Lett. 296, 129934 (2021).

    Article  Google Scholar 

  2. T. Shinonag, A. Okada, H. Liu, and M. Kimura, J. Mater. Process. Technol. 254, 229 (2018).

    Article  Google Scholar 

  3. W.C. Kong, Z. Yu, and J. Hu, Corros. Sci. 204, 110375 (2022).

    Article  Google Scholar 

  4. A.H. Ching, K.L. Che, and H.Y. Yu, Surf. Coat. Tech. 205(1), 139 (2010).

    Article  Google Scholar 

  5. F. Mukhtar, F. Qayyum, Z. Anjum, and M. Shah, Wear 418–419, 215 (2019).

    Article  Google Scholar 

  6. J.M. Prabhakar, R.S. Varanasi, C.C. Silva, Saba, A. Vooys, A. Erbe, and M. Rohwerder, Corros. Sci. 187, 109525 (2021).

    Article  Google Scholar 

  7. L. Büker, R. Böttcher, M. Leimbach, T. Hahne, R. Dickbreder, and A. Bund, Electrochim. Acta 411, 140054 (2022).

    Article  Google Scholar 

  8. G. Bikulčius, A. Češunienė, A. Selskienė, V. Pakštas, and T. Matijošius, Surf. Coat. Technol. 315, 130 (2017).

    Article  Google Scholar 

  9. F.I. Danilov, V.S. Protsenko, V.O. Gordiienko, and S.C. Kwon, Appl. Surf. Sci. 257(18), 8048 (2011).

    Article  Google Scholar 

  10. N. Wint, D.J. Warren, A.C.A. DeVooys, and H.N. McMurray, J. Electrochem. Soc. 167, 141506 (2020).

    Article  Google Scholar 

  11. A.M. Liang, L.W. Ni, Q. Liu, and J.Y. Zhang, Surf. Coat. Technol. 218, 23 (2013).

    Article  Google Scholar 

  12. G. Saravanan and S. Mohan, J. Appl. Electrochem. 40, 1 (2010).

    Article  Google Scholar 

  13. Z. Zeng, L. Wang, A. Liang, and J. Zhang, Electrochim. Acta 52, 1366 (2006).

    Article  Google Scholar 

  14. S.K. Ibrahim, D.T. Gawne, and A. Watson, Trans. Inst. Met. Finish. 76, 156 (1998).

    Article  Google Scholar 

  15. C.W. Liao, H.B. Lee, K.H. Hou, S.Y. Jian, C.E. Lu, and M.D. Ger, Electrochim. Acta. 209, 244 (2016).

    Article  Google Scholar 

  16. S. Mahdavi and S.R. Allahkaram, J. Alloys Compd. 635, 150 (2015).

    Article  Google Scholar 

  17. M. Gsellmann, D. Scheiber, T. Klünsner, J. Zálešák, Z.L. Zhang, H. Leitner, C. Mitterer, G. Ressel, and L. Romaner, Acta Mater. 222, 117439 (2022).

    Article  Google Scholar 

  18. W.X. Zhu and D.J. Kong, Mater. Sci. Pol. 39(3), 395 (2021).

    Article  Google Scholar 

  19. J.L. Zhou and D.J. Kong, J. Mater. Eng. Perform. 29, 7428 (2020).

    Article  Google Scholar 

  20. C.E. Lu, N.W. Pu, K.H. Hou, C.C. Tseng, and M.D. Ger, Appl. Sur. Sci. 282, 544 (2013).

    Article  Google Scholar 

  21. X.Y. Fu, T. Sotani, and H. Matsuyama, Desalination 233, 10 (2008).

    Article  Google Scholar 

  22. W.C. Kong, Z. Yu, and J. Hu, Ceram. Int. 47, 34425 (2021).

    Article  Google Scholar 

  23. J.L. Zhou and D.J. Kong, Surf. Coat. Technol. 408, 126816 (2021).

    Article  Google Scholar 

  24. J.L. Zhou and D.J. Kong, Surf. Coat. Technol. 383, 125229 (2020).

    Article  Google Scholar 

  25. Y. Wang, Y.H. Liu, G.B. Li, M.M. Zheng, Y.S. Li, A.L. Zhang, and Y.C. Zhang, Surf. Coat. Technol. 422, 127527 (2021).

    Article  Google Scholar 

  26. W.M. Su, S.P. Niu, Y.C. Huang, C. Wang, Y.Y. Wen, X. Li, C.M. Deng, C.G. Deng, and M. Liu, Ceram. Int. 48(6), 8696 (2022).

    Article  Google Scholar 

  27. T.T. Zhang, H. Lan, C.B. Huang, L.Z. Du, and W.G. Zhang, Surf. Coat. Technol. 319, 47 (2017).

    Article  Google Scholar 

  28. F. Cai, J.M. Zhang, J.M. Wang, J. Zheng, Q.M. Wang, and S.H. Zhang, Tribol. Int. 153, 106657 (2021).

    Article  Google Scholar 

  29. X.D. Sui, J.Y. Liu, S.T. Zhang, J. Yang, and J.Y. Hao, Appl. Surf. Sci. 439, 24 (2018).

    Article  Google Scholar 

  30. B.S. Zhang, Y.Q. Yu, S.S. Zhu, Z.J. Zhang, X.W. Tao, Z.Z. Wang, and B. Lu, Mater. Chem. Phys. 276, 125352 (2022).

    Article  Google Scholar 

  31. J.L. Daure, M.J. Carrington, P.H. Shipway, D.G. McCartney, and D.A. Stewart, Surf. Coat. Technol. 350, 40 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dejun Kong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Xu, Y. & Kong, D. Microstructure and Tribological Performance of Electrodeposited Cr Coating with Trivalent–Chromium Electrolyte. JOM 74, 4575–4582 (2022). https://doi.org/10.1007/s11837-022-05577-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05577-6

Navigation