Skip to main content
Log in

Efficient Thermal Barrier Coating Removal by Nanosecond Laser

  • Advances in Surface Engineering
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Repair and reuse of failed thermal barrier coatings (TBCs) have a very important impact on economic efficiency and quality. In this study, a nanosecond laser-based coating removing process has been used to remove the TBCs top coating, the results showing that nanosecond laser can remove the top coating at a high speed and without affecting the bond coat. Among them, the ablation depth was related to pulse duration, laser scanning speed, and removal path. Based on the test of different process parameters, their advantages have been summarized. Furthermore, the best removal path has been designed to achieve the best removal results, and the total removal time is controlled within 45 s. In addition, based on finite element analysis, a three-dimensional model for simulation of the residual thermal and residual stress has been developed, in order to discuss the influence of the removal path and the phenomenon of thin TBC spalling in the experiment. Based on this investigation, the mechanism of residual stress in the laser spalling of TBCs is proposed. Combined with the ablation and stress spalling mechanisms of the nanosecond laser, the optimal TBC removal result was achieved with high efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

All research data supporting this publication are directly available within this publication.

References

  1. A.G. Evans, D.R. Mumm, J.W. Hutchinsom, G.H. Heier, and F.S. Pettit, Prog. Mater. Sci. 5, 46. https://doi.org/10.1016/S0079-6425(00)00020-7 (2011).

    Article  Google Scholar 

  2. G.L. Carlos, Curr. Opin. Solid. State Mater. 1, 8. https://doi.org/10.1016/j.cossms.2004.03.009 (2002).

    Article  Google Scholar 

  3. D.R. Clarke, M. Oechsner, and N.P. Padture, MRS Bull. 10, 37. https://doi.org/10.1557/mrs.2012.232 (2012).

    Article  Google Scholar 

  4. R. Darolia, Int. Mater. Rev. 6, 58. https://doi.org/10.1179/1743280413Y.0000000019 (2013).

    Article  Google Scholar 

  5. N.P. Padture, M. Gell, and E.H. Jordan, Science 5566, 296. https://doi.org/10.1126/science.1068609 (2002).

    Article  Google Scholar 

  6. M. Ranjbar-Far, J. Absi, S. Shahidi, and G. Mariaux, Mater. Des. 2, 32. https://doi.org/10.1016/j.matdes.2010.07.034 (2011).

    Article  Google Scholar 

  7. M.R. Rad, G.H. Farrahi, M. Azadi, and M. Ghodrati, Ceram Int. 10, 40. https://doi.org/10.1016/j.ceramint.2014.07.121 (2014).

    Article  Google Scholar 

  8. L. Wu, J. Zhu, and H. Xie, J. Therm. Spray. Technol. 4, 23. https://doi.org/10.1007/s11666-014-0063-8 (2014).

    Article  Google Scholar 

  9. M.J. Lee, B.C. Lee, J.G. Lim, and M.K. Kim, J. Mech. Sci. Technol. 6, 28. https://doi.org/10.1007/s12206-014-0315-z (2014).

    Article  Google Scholar 

  10. M. Arai, J. Therm. Spray. Technol. 6, 26. https://doi.org/10.1007/s11666-017-0576-z (2017).

    Article  Google Scholar 

  11. P. Zhang, X. Zhang, F. Li, Z.H. Zhang, Y.L. Wang, L.Q. Ren, and M. Liu, J. Therm. Spray. Technol. 6, 28. https://doi.org/10.1007/s11666-019-00880-2 (2019).

    Article  Google Scholar 

  12. S. Marimuthu, A.M. Kamara, H.K. Sezer, L. Li, and G.K.L. Ng, Comput. Mater. Sci. 88, 131–138. https://doi.org/10.1016/j.commatsci.2014.02.022 (2014).

    Article  Google Scholar 

  13. S. Marimuthu, B. Smith, A. Kiely, and Y.J. Liu, Cirp. J. Manuf. Sci. Technol. https://doi.org/10.1016/j.cirpj.2019.11.004 (2019).

    Article  Google Scholar 

  14. B.M. Warnes, and J.E. Schilbe, Surf. Coat. Technol. https://doi.org/10.1016/S0257-8972(01)01370-6 (2001).

    Article  Google Scholar 

  15. X. Yang, J. Zhang, Z. Lu, H.Y. Park, Y.G. Jung, H. Park, D.D. Koo, R. Sinatra, J. Zhang, and T.I. Met, Finish. 3, 98. https://doi.org/10.1080/00202967.2020.1750204 (2020).

    Article  Google Scholar 

  16. S. Zhang, L. Xu, J. Wu, Y. Yang, C.X. Zhang, H.Y. Tao, J.Q. Lin, L.C. Huang, W.C. Fang, K.Y. Shi, and X.T. Dong, Nano. Res. 2, 15. https://doi.org/10.1007/s12274-021-3811-3 (2022).

    Article  Google Scholar 

  17. W. Qian, Y. Hua, R. Chen, P. Xu, and J. Yang, Mater. Lett. https://doi.org/10.1016/j.matlet.2020.127570 (2020).

    Article  Google Scholar 

  18. A. Sassmannshausen, A. Brenner, and J. Finger, J. Mater. Process. Technol. 293, 117058. https://doi.org/10.1016/j.jmatprotec.2021.117058 (2021).

    Article  Google Scholar 

  19. M. Wisse, L. Marot, R. Steiner, D. Mathys, A.A. Stumpp, and Joanny, Fus. Sci. Technol. 2, 66. https://doi.org/10.13182/FST13-771 (2014).

    Article  Google Scholar 

  20. K.H. Leitz, B. Redlingshöfer, Y. Reg, O. Andreas, and S. Michael, Phys. Proc. https://doi.org/10.1016/j.phpro.2011.03.128 (2011).

    Article  Google Scholar 

  21. H.P. Zhang, Z.Y. Cai, J.X. Chi, R.J.C. Sun, Z.G. Che, L.C. Lin, P. Peng, H.Q. Zhang, and B. Wei, Surf. Coat. Technol. 15, 437. https://doi.org/10.1016/j.surfcoat.2022.128378 (2022).

    Article  Google Scholar 

  22. W.F. Zou, Y.M. Xie, X. Xiao, and Y. Luo, Chin. Phys. B. 7, 23. https://doi.org/10.1088/1674-1056/23/7/074205 (2014).

    Article  Google Scholar 

  23. Z.H. Jin, and G.H. Paulino, Int. J. Fract. 1, 107. https://doi.org/10.1023/A:1026583903046 (2001).

    Article  Google Scholar 

  24. Q. Li, P. Hou, and S. Shang, Int. J. Mech. Sci. https://doi.org/10.1016/j.ijmecsci.2021.107024 (2022).

    Article  Google Scholar 

  25. S.R. Dhineshkumar, M. Duraiselvam, and S. Natarajan, Ceram Int. https://doi.org/10.1016/j.ceramint.2016.03.134 (2016).

    Article  Google Scholar 

  26. K. Yan, Y. Xiang, H. Yu, Z. Li, Y. Wu, and J. Sun, Surf. Coat. Technol. https://doi.org/10.1016/j.surfcoat.2021.128038 (2022).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YinQun Hua.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 465 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, Z., Qian, W., Jin, J. et al. Efficient Thermal Barrier Coating Removal by Nanosecond Laser. JOM 75, 55–63 (2023). https://doi.org/10.1007/s11837-022-05568-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05568-7

Navigation