Skip to main content
Log in

Anodic Process of Stibnite in Slurry Electrolysis: Indirect Electro-Oxidation

  • Process Intensification in Hydro- and Electrometallurgy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The application of slurry electrolysis for high-arsenic antimony–gold concentrate treatment provides several benefits, including a short treatment process, complete separation of antimony and gold, and low environmental impact. A key process in slurry electrolysis is the anodic reaction. In this study, pure stibnite was used as raw material and linear sweep voltammetry was adopted to investigate the anodic process with the introduction of the Fe(III)/Fe(II) redox couple. The results indicated that the anodic polarization curve comprised three distinct regions: a low potential region (0.47–0.65 V), where the reaction rate was controlled by the electrochemical reaction; a medium potential region (0.65–0.90 V), where the electrochemical reaction was accelerated with an increase in overpotential, and the diffusion of Fe(II) gradually became the rate-controlling step; and a high potential region, where the reaction reached a stable state in which Fe(II) diffusion controlled the rate, and the polarization current density changed minimally with an increase in potential. The effects of particle size, liquid–solid ratio, stirring speed, temperature, and iron ion concentration were also investigated. The introduction of Fe(III)/Fe(II) considerably improved the oxidative leaching rate and significantly reduced the power consumption of electrolysis, offering the possibility of using slurry electrolysis in industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Zhao, Antimony (Metallurgical Industry Press, Beijing, 1987), pp. 7–10, 106.

  2. C.G. Anderson, Chem. Erde-Geochem. 72, 3. https://doi.org/10.1016/j.chemer.2012.04.001 (2012).

    Article  Google Scholar 

  3. S.A. Awe, and Å. Sandström, Hydrometallurgy 137, 60. https://doi.org/10.1016/j.hydromet.2013.04.006 (2013).

    Article  Google Scholar 

  4. R.S. Multani, T. Feldmann, and G.P. Demopoulos, Hydrometallurgy 164, 141. https://doi.org/10.1016/j.hydromet.2016.06.014 (2016).

    Article  Google Scholar 

  5. X. Hu, M. He, S. Li, and X. Guo, J. Geochem. Explor. 176, 76. https://doi.org/10.1016/j.gexplo.2016.01.009 (2017).

    Article  Google Scholar 

  6. Z. Ouyang, S. Liu, C. Tang, Y. Chen, and L. Ye, Vacuum 159, 358. https://doi.org/10.1016/j.vacuum.2018.10.062 (2019).

    Article  Google Scholar 

  7. S. Dembele, A. Akcil, and S. Panda, Miner. Eng. 175, 107304. https://doi.org/10.1016/j.mineng.2021.107304 (2022).

    Article  Google Scholar 

  8. Z. Zhou, D. Liu, H. Xiong, B. Zhang, B. Yang, Y. Deng, and J. Zhao, Vacuum 157, 487. https://doi.org/10.1016/j.vacuum.2018.08.022 (2018).

    Article  Google Scholar 

  9. C. Wang, S. Shao, B. Ma, X. Li, Y. Cheng, and P. Xing, Nonferrous Metals (Extractive Metallurgy). 08, 11. https://doi.org/10.3969/j.issn.1007-7545.2019.08.002 (2019).

    Article  Google Scholar 

  10. S. Aktaş, and B.N. Çetiner, Mining. Metallurgy & Exploration. 37, 1729. https://doi.org/10.1007/s42461-020-00266-x (2020).

    Article  Google Scholar 

  11. S. Ubaldini, F. Vegliò, P. Fornari, and C. Abbruzzese, Hydrometallurgy. 57, 187. https://doi.org/10.1016/S0304-386X(00)00107-9 (2000).

    Article  Google Scholar 

  12. T. Yang, M. Jiang, Q. Lai, J. Chen, and J. Cent, South Univ. T. 12, 290. https://doi.org/10.1007/s11771-005-0147-1 (2005).

    Article  Google Scholar 

  13. J. Yang, and Y. Wu, Hydrometallurgy 143, 68. https://doi.org/10.1016/j.hydromet.2014.01.002 (2014).

    Article  Google Scholar 

  14. Q. Tian, H. Wang, Y. Xin, D. Li, and X. Guo, Hydrometallurgy 159, 126. https://doi.org/10.1016/j.hydromet.2015.11.011 (2016).

    Article  Google Scholar 

  15. P. Guo, S. Wang, and L. Zhang, Hydrometallurgy 190, 105161. https://doi.org/10.1016/j.hydromet.2019.105161 (2019).

    Article  Google Scholar 

  16. O. Celep, Miner. Eng. 172, 107171. https://doi.org/10.1016/j.mineng.2021.107171 (2021).

    Article  Google Scholar 

  17. Z. Dong, Z. Zhou, H. Xiong, B. Yang, and Y. Dai, Sep. Purif. Technol. 279, 119776. https://doi.org/10.1016/j.seppur.2021.119776 (2021).

    Article  Google Scholar 

  18. G. Deschênes, C. Xia, M. Fulton, L.J. Cabri, and J. Price, Miner. Eng. 22, 799. https://doi.org/10.1016/j.mineng.2009.02.003 (2009).

    Article  Google Scholar 

  19. G. Morizot, and P. Ollivier, Miner. Eng. 6, 841. https://doi.org/10.1016/0892-6875(93)90058-U (1993).

    Article  Google Scholar 

  20. T. Yang, S. Rao, W. Liu, D. Zhang, and L. Chen, Hydrometallurgy 169, 571. https://doi.org/10.1016/j.hydromet.2017.03.014 (2017).

    Article  Google Scholar 

  21. G. Larrabure, and J.C.F. Rodríguez-Reyes, Miner. Eng. 173, 107194. https://doi.org/10.1016/j.mineng.2021.107194 (2021).

    Article  Google Scholar 

  22. Y. Hua, Y. Yang, and F. Zhu, J. Mater. Sci. Technol. 19, 619. https://doi.org/10.3321/j.issn:1005-0302.2003.06.030 (2003).

    Article  Google Scholar 

  23. W. Qin, H. Luo, W. Liu, Y. Zheng, K. Yang, J. Han, and J. Cent, South Univ. 22, 868. https://doi.org/10.1007/s11771-015-2595-6 (2015).

    Article  Google Scholar 

  24. Ö. Gök, Hydrometallurgy 149, 23. https://doi.org/10.1016/j.hydromet.2014.06.007 (2014).

    Article  Google Scholar 

  25. M. Zekavat, H. Yoozbashizadeh, and A. Khodaei, JOM-US. 73, 903. https://doi.org/10.1007/s11837-020-04531-8 (2021).

    Article  Google Scholar 

  26. E. Sminčáková, JOM-US. 61, 32. https://doi.org/10.1007/s11837-009-0149-9 (2009).

    Article  Google Scholar 

  27. Y. Li, H. Xue, P. Taskinen, A. Jokilaakso, C. Tang, W. Jin, M. Rämä, Y. Chen, and S. Yang, J. Clean. Prod. 313, 127847. https://doi.org/10.1016/j.jclepro.2021.127847 (2021).

    Article  Google Scholar 

  28. L. Ye, Z. Ouyang, Y. Chen, and Y. Chen, Hydrometallurgy 186, 210. https://doi.org/10.1016/j.hydromet.2019.04.021 (2019).

    Article  Google Scholar 

  29. Y. Zhang, C. Wang, B. Ma, X. Jie, and P. Xing, Hydrometallurgy 186, 284. https://doi.org/10.1016/j.hydromet.2019.04.026 (2019).

    Article  Google Scholar 

  30. D. Qiu, Slurry electrolysis (Metallurgical Industry Press, Beijing, 1999), pp 6–7.

    Google Scholar 

  31. S. Zhang, Y. Li, R. Wang, B. Wang, Z. Xu, S. Chen, and M. Chen, J. Clean. Prod. 152, 1. https://doi.org/10.1016/j.jclepro.2017.03.087 (2017).

    Article  Google Scholar 

  32. D. Qiu, Chin. Eng. Sci. (in Chinese). 1, 67. (1999).

    Google Scholar 

  33. Z. Li, L. He, Z. Zhao, D. Wang, W. Xu, and A.C.S. Sustain, Chem. Eng. 7, 16738. https://doi.org/10.1021/acssuschemeng.9b04127 (2019).

    Article  Google Scholar 

  34. Y. Zhang, D. Qiu, C. Wang, Y. Chen, Z. Yao, X. Jie, W. Gao, and S. Ruan, Chin. J Chem. Eng. 41, 466. https://doi.org/10.1016/j.cjche.2021.12.011 (2022).

    Article  Google Scholar 

  35. Y. Zhang, and J. Chen, Nonferrous Met. 50, 72. (1998).

    Google Scholar 

  36. C. Wang, D. Qiu, and P. Jiang, Nonferrous Met. 55, 25. https://doi.org/10.3969/j.issn.2095-1744.2003.01.008 (2003).

    Article  Google Scholar 

  37. Q. Fu, and R. Man, Guangdong Chem. Ind. 45, 4. https://doi.org/10.3969/j.issn.1007-1865.2018.08.003 (2018).

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (Grant No. 2019YFC1908401, 2019YFC1908301), and the National Natural Science Foundation of China (Grant No. 51604030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengyan Wang or Yongqiang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Yao, Z., Jie, X. et al. Anodic Process of Stibnite in Slurry Electrolysis: Indirect Electro-Oxidation. JOM 75, 1551–1558 (2023). https://doi.org/10.1007/s11837-022-05563-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05563-y

Navigation