Skip to main content
Log in

Manufacturing and Measuring Techniques for Graphene-Silicone-Based Strain Sensors

  • 2D Materials – Preparation, Properties & Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The development of techniques for synthesizing graphene and its derivatives, as well as currently available nanocomposite fabrication techniques, coupled with the diverse applications of strain and pressure sensors, has made this field of growing interest in the last decade. This article provides an overview of conventional strain sensor manufacturing techniques, such as in situ polymerization, solution blending, and electrospinning. It also covers various additive manufacturing techniques such as vat-photopolymerization, material extrusion, material jetting, sheet lamination, and the most common graphene synthesis techniques like chemical-based, vapor deposition, exfoliation, and mechanical-based methods. The review is also completed with a discussion about the sensing mechanisms of strain sensors, considering the various process parameters to characterize and compare the performance of a strain sensor. Finally, we examine several key aspects of the sensor’s component materials, the type of sensing mechanism, and the appropriate manufacturing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Park, I. You, S. Shin, and U. Jeong, ChemPhysChem 16, 1155. (2015).

    Article  Google Scholar 

  2. A.K. Kasar, G. Xiong, and P.L. Menezes, JOM 70, 829. (2018).

    Article  Google Scholar 

  3. X. Liu, Y. Wei, and Y. Qiu, Micromachines (Basel) 12, 695. (2021).

    Article  Google Scholar 

  4. S. Seyedin, P. Zhang, M. Naebe, S. Qin, J. Chen, X. Wang, and J.M. Razal, Mater. Horizons 6, 219. (2019).

    Article  Google Scholar 

  5. S. Sony, S. Laventure, and A. Sadhu, Struct. Control Health Monitor. 26, e2321. (2019).

    Article  Google Scholar 

  6. V. Sanchez, C.J. Walsh, and R.J. Wood, Adv. Funct. Mater. 31, 2008278. (2021).

    Article  Google Scholar 

  7. H. Liu, Q. Li, S. Zhang, R. Yin, X. Liu, Y. He, K. Dai, C. Shan, J. Guo, and C. Liu, J. Mater. Chem. C 6, 12121. (2018).

    Article  Google Scholar 

  8. F. Xu, X. Li, Y. Shi, L. Li, W. Wang, L. He, and R. Liu, Micromachines (Basel) 9, 580. (2018).

    Article  Google Scholar 

  9. A. Mehmood, N.M. Mubarak, M. Khalid, R. Walvekar, E.C. Abdullah, M.T.H. Siddiqui, H.A. Baloch, S. Nizamuddin, and S. Mazari, J. Environ. Chem. Eng. 8, 103743. (2020).

    Article  Google Scholar 

  10. M.K. Mohammed, A. Al-Nafiey, and G. Al-Dahash, Nano Biomed. Eng. 13, 27. (2021).

  11. T. Wang, Z. Ouyang, F. Wang, and Y. Liu, SN Appl. Sci. 2, 1. (2020).

    Google Scholar 

  12. A. Nag, A. Mitra, and S.C. Mukhopadhyay, Sens. Actuators A: Phys. 270, 177. (2018).

    Article  Google Scholar 

  13. M. Asyraf, M. Anwar, L.M. Sheng, and M.K. Danquah, JOM 69, 2515. (2017).

    Article  Google Scholar 

  14. P. Cataldi, A. Athanassiou, and I.S. Bayer, Appl. Sci. 8, 1438. (2018).

    Article  Google Scholar 

  15. Y. Zhu, H. Cai, H. Ding, N. Pan, and X. Wang, ACS Appl. Mater. Interfaces 11, 6195. (2019).

    Article  Google Scholar 

  16. Q. Guo, Y. Luo, J. Liu, X. Zhang, and C. Lu, J. Mater. Chem. C 6, 2139. (2018).

    Article  Google Scholar 

  17. H. Liu, H. Gao, and G. Hu, Compos. Part B Eng. 171, 138. (2019).

    Article  Google Scholar 

  18. M.R. Pagnola, F. Morales, P. Tancredi, and L.M. Socolovsky, JOM 73, 2471. (2021).

    Article  Google Scholar 

  19. S. Hao, J. Wang, M. Lavorgna, G. Fei, Z. Wang, and H. Xia, ACS Appl. Mater. Interfaces 12, 9682. (2020).

    Article  Google Scholar 

  20. H. Montazerian, A. Rashidi, A. Dalili, H. Najjaran, A.S. Milani, and M. Hoorfar, Small 15, 1804991. (2019).

    Article  Google Scholar 

  21. Y. Li, T. He, L. Shi, R. Wang, and J. Sun, ACS Appl. Mater. Interfaces 12, 17691. (2020).

    Article  Google Scholar 

  22. V. Kumar, M.N. Alam, A. Manikkavel, M. Song, D.J. Lee, and S.S. Park, Polymers (Basel) 13, 2322. (2021).

    Article  Google Scholar 

  23. L. Zhao, F. Qiang, S.-W. Dai, S.-C. Shen, Y.-Z. Huang, N.-J. Huang, G.-D. Zhang, L.-Z. Guan, J.-F. Gao, and Y.-H. Song, Nanoscale 11, 10229. (2019).

    Article  Google Scholar 

  24. J. Ren, W. Zhang, Y. Wang, Y. Wang, J. Zhou, L. Dai, and M. Xu, InfoMat 1, 396. (2019).

    Article  Google Scholar 

  25. Y. Zhu, H. Cai, H. Ding, N. Pan, and X. Wang, ACS Appl. Mater. Interfaces 11, 6195. (2019).

    Article  Google Scholar 

  26. D. Niu, W. Jiang, G. Ye, K. Wang, L. Yin, Y. Shi, B. Chen, F. Luo, and H. Liu, Mater. Res. Bull. 102, 92. (2018).

    Article  Google Scholar 

  27. S. Luo, J. Yang, X. Song, X. Zhou, L. Yu, T. Sun, C. Yu, D. Huang, C. Du, and D. Wei, Solid-State Electron. 145, 29. (2018).

    Article  Google Scholar 

  28. Z. Wang, Q. Zhang, Y. Yue, J. Xu, W. Xu, X. Sun, Y. Chen, J. Jiang, and Y. Liu, Nanotechnology 30, 345501. (2019).

    Article  Google Scholar 

  29. S.-Y. Jeong, Y.-W. Ma, J.-U. Lee, G.-J. Je, and B. Shin, Sensors 19, 4867. (2019).

    Article  Google Scholar 

  30. H. Lee, M.J. Kim, J.H. Kim, J.-Y. Lee, E. Ji, A. Capasso, H.-J. Choi, W. Shim, and G.-H. Lee, Mater. Res. Express 7, 45603. (2020).

    Article  Google Scholar 

  31. J. Chen, Y. Zhu, and W. Jiang, Compos. Sci. Technol. 186, 107938. (2020).

    Article  Google Scholar 

  32. T. Kumpika, E. Kantarak, A. Sriboonruang, W. Sroila, P. Tippo, W. Thongpan, P. Pooseekheaw, A. Panthawan, N. Jumrus, and P. Sanmuangmoon, Mater. Res. Express 7, 35006. (2020).

    Article  Google Scholar 

  33. D.P. O’Driscoll, S. McMahon, J. Garcia, S. Biccai, C. Gabbett, A.G. Kelly, S. Barwich, M. Moebius, C.S. Boland, and J.N. Coleman, Small 17, 2006542. (2021).

    Article  Google Scholar 

  34. M. Anas, M.A. Nasir, Z. Asfar, S. Nauman, M. Akalin, and F. Ahmad, J. Brazil. Soc. Sci. Eng. 40, 1. (2018).

    Google Scholar 

  35. Q. Meng, Z. Liu, S. Han, L. Xu, S. Araby, R. Cai, Y. Zhao, S. Lu, and T. Liu, J. Mater. Sci. 54, 10856. (2019).

    Article  Google Scholar 

  36. S. Lu, C. Tian, X. Wang, D. Chen, K. Ma, J. Leng, and L. Zhang, Sens. Actuators A Phys. 267, 409. (2017).

    Article  Google Scholar 

  37. S. Pan, Z. Pei, Z. Jing, J. Song, W. Zhang, Q. Zhang, and S. Sang, Rsc Adv. 10, 11225. (2020).

    Article  Google Scholar 

  38. P. Miao, J. Wang, C. Zhang, M. Sun, S. Cheng, and H. Liu, Nano-Micro Lett. 11, 1. (2019).

    Article  Google Scholar 

  39. R. Li, Q. Zhou, Y. Bi, S. Cao, X. Xia, A. Yang, S. Li, and X. Xiao, Sens. Actuators A: Phys. 321, 112425. (2020).

    Article  Google Scholar 

  40. Z. He, W. Chen, B. Liang, C. Liu, L. Yang, D. Lu, Z. Mo, H. Zhu, Z. Tang, and X. Gui, ACS Appl. Mater. Interfaces 10, 12816. (2018).

    Article  Google Scholar 

  41. F. Avilés, A.I. Oliva-Avilés, and M. Cen-Puc, Adv. Eng. Mater. 20, 1701159. (2018).

    Article  Google Scholar 

  42. C.S. Boland, U. Khan, G. Ryan, S. Barwich, R. Charifou, A. Harvey, C. Backes, Z. Li, M.S. Ferreira, M.E. Möbius, R.J. Young, and J.N. Coleman, Science 354(6317), 1257–1260. https://doi.org/10.1126/science.aag2879 (2016).

    Article  Google Scholar 

  43. D.P. O’Driscoll, V. Vega-Mayoral, I. Harley, C.S. Boland, and J.N. Coleman, 2D Mater. 5, 35042. (2018).

    Article  Google Scholar 

  44. M. Hébert, J.P. Huissoon, and C.L. Ren, Sens. Actuators A: Phys. 305, 111917. (2020).

    Article  Google Scholar 

  45. J. Peña-Consuegra, J. Useche, and M. Pagnola, 2020 IX International Congress of Mechatronics Engineering and Automation (CIIMA) 1 (2020). https://doi.org/10.1109/CIIMA50553.2020.9290292

  46. J. Peña-Consuegra, J. Useche, M. Pagnola, R. Algoberro, and J. Bauer, Proyecciones 19(1), 77. (2021). http://hdl.handle.net/20.500.12272/5586.

  47. J. He, Y. Zhang, R. Zhou, L. Meng, T. Chen, W. Mai, and C. Pan, J. Materiom. 6, 86. (2020).

    Article  Google Scholar 

  48. X. Jin, C. Feng, D. Ponnamma, Z. Yi, J. Parameswaranpillai, S. Thomas, and N. Salim, Chem. Eng. J. Adv. 4, 100034. (2020).

    Article  Google Scholar 

  49. Q. Zheng, J. Lee, X. Shen, X. Chen, and J. Kim, Mater. Today 36, 158. (2020).

    Article  Google Scholar 

  50. V. Sankar, A. Nambi, V.N. Bhat, D. Sethy, K. Balasubramaniam, S. Das, M. Guha, and R. Sundara, ACS Omega 5, 12682. (2020).

    Article  Google Scholar 

  51. X. Wang, J. Li, H. Song, H. Huang, and J. Gou, ACS Appl. Mater. Interfaces 10, 7371. (2018).

    Article  Google Scholar 

  52. Y. Gao, X. Fang, J. Tan, T. Lu, L. Pan, and F. Xuan, Nanotechnology 29, 235501. (2018).

    Article  Google Scholar 

  53. Y. Wang, Y. Wang, and Y. Yang, Adv. Energy Mater. 8, 1800961. (2018).

    Article  Google Scholar 

  54. S. Lu, C. Tian, X. Wang, L. Zhang, K. Du, K. Ma, and T. Xu, Compos. Sci. Technol. 158, 94. (2018).

    Article  Google Scholar 

  55. S. Riyajuddin, S. Kumar, S.P. Gaur, A. Sud, T. Maruyama, M.E. Ali, and K. Ghosh, Nanotechnology 31, 295501. (2020).

    Article  Google Scholar 

  56. J.R. Garcia, D. O’Suilleabhain, H. Kaur, and J.N. Coleman, ACS Appl. Nano Mater. 4, 2876. (2021).

    Article  Google Scholar 

  57. D. Maurya, S. Khaleghian, R. Sriramdas, P. Kumar, R. Kishore, M. Kang, V. Kumar, H. Song, S. Lee, and Y. Yan, Nat Commun 11, 1. (2020).

    Article  Google Scholar 

  58. A. Qiu, Q. Jia, H. Yu, J. Oh, D. Li, H. Hsu, N. Kawashima, Y. Zhuge, and J. Ma, Mater. Commun. 26, 102023. (2021).

    Google Scholar 

  59. E.P. Randviir, D.A.C. Brownson, and C.E. Banks, Mater. Today 17, 426. (2014).

    Article  Google Scholar 

  60. I. Lahiri, S. Das, C. Kang, and W. Choi, JOM 63, 70. (2011).

    Article  Google Scholar 

  61. M.S.A. Bhuyan, M.N. Uddin, M.M. Islam, F.A. Bipasha, and S.S. Hossain, Int. Nano Lett. 6, 65. (2016).

    Article  Google Scholar 

  62. Y. Song, Y. Luo, C. Zhu, H. Li, D. Du, and Y. Lin, Biosens. Bioelectron. 76, 195. (2016).

    Article  Google Scholar 

  63. K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, Science 306, 666. (2004).

    Article  Google Scholar 

  64. J.Y. Lim, N.M. Mubarak, E.C. Abdullah, S. Nizamuddin, and M. Khalid, J. Ind. Eng. Chem. 66, 29. (2018).

    Article  Google Scholar 

  65. T. Terasawa, and K. Saiki, Inorganic Nanosheets and Nanosheet-Based Materials (Springer, Heidelberg, 2017), pp 101–132.

    Book  Google Scholar 

  66. M. Nie, Y. Xia, and H. Yang, Cluster Comput. 22, 8217. (2019).

    Article  Google Scholar 

  67. Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, and Y.K. Guo, Nat. Nanotechnol. 3, 563. (2008).

    Article  Google Scholar 

  68. L. Staudenmaier, Berichte Der Deutschen Chemischen Gesellschaft 31, 1481. (1898).

    Article  Google Scholar 

  69. S. William, J. Am. Chem. Soc. 80, 1339. (1958).

    Article  Google Scholar 

  70. B.C. Brodie, Ann. Chim. Phys. 59, e472. (1860).

    Google Scholar 

  71. H.J. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.-S. Jung, M.H. Jin, H.K. Jeong, J.M. Kim, and J.Y. Choi, Adv. Funct. Mater. 19, 1987. (2009).

    Article  Google Scholar 

  72. X. Zhou, J. Zhang, H. Wu, H. Yang, J. Zhang, and S. Guo, J. Phys. Chem. C 115, 11957. (2011).

    Article  Google Scholar 

  73. V.H. Pham, T.V. Cuong, T.D. Nguyen-Phan, H.D. Pham, E.J. Kim, S.H. Hur, E.W. Shin, S. Kim, and J.S. Chung, Chem. Commun. 46, 4375. (2010).

    Article  Google Scholar 

  74. J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, and S. Guo, Chem. Commun. 46, 1112. (2010).

    Article  Google Scholar 

  75. C. Zhu, S. Guo, and Y. Fang, ACS Nano 4, 2429. (2010).

    Article  Google Scholar 

  76. X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang, and F. Zhang, Adv. Mater. 20, 4490. (2008).

    Article  Google Scholar 

  77. G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, and J. Yao, J. Phys. Chem. C 112, 8192. (2008).

    Article  Google Scholar 

  78. C.A. Amarnath, C.E. Hong, N.H. Kim, B.C. Ku, T. Kuila, and J.H. Lee, Carbon 49(11), 3497. (2011).

    Article  Google Scholar 

  79. O.C. Compton, B. Jain, D.A. Dikin, A. Abouimrane, K. Amine, and S.T. Nguyen, ACS Nano 5, 4380. (2011).

    Article  Google Scholar 

  80. D.P. Hansora, N.G. Shimpi, and S. Mishra, JOM 67, 2855. (2015).

    Article  Google Scholar 

  81. J.I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J.M.D. Tascon, Langmuir 24, 10560. (2008).

    Article  Google Scholar 

  82. D. Marcano, D. Kosynkin, J. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. Alemany, W. Lu, and J. Tour, ACS Nano 4, 4806. (2010).

    Article  Google Scholar 

  83. S. Dubin, S. Gilje, K. Wang, V.C. Tung, K. Cha, A.S. Hall, J. Farrar, R. Varshneya, Y. Yang, and R.B. Kaner, ACS Nano 4, 3845. (2010).

    Article  Google Scholar 

  84. F. Akbar, M. Kolahdouz, S. Larimian, B. Radfar, and H.H. Radamson, J. Mater. Sci. Mater. Electron. 26, 4347. (2015).

    Article  Google Scholar 

  85. A. van Bommel, J. Crombeen, and A. van Tooren, Surf. Sci. 48, 463. (1975).

    Article  Google Scholar 

  86. W. A. de Heer, ArXiv Preprint arxiv:1012.1644 (2010).

  87. W.A. de Heer, C. Berger, M. Ruan, M. Sprinkle, X. Li, Y. Hu, B. Zhang, J. Hankinson, and E. Conrad, Proc. Natl. Acad. Sci. 108, 16900. (2011).

    Article  Google Scholar 

  88. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Nature 438(7065), 197. (2005).

    Article  Google Scholar 

  89. D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, Nano Lett. 9, 1752. (2009).

    Article  Google Scholar 

  90. Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. Chen, and S.S. Pei, Appl. Phys. Lett. 93, 113103. (2008).

    Article  Google Scholar 

  91. C. Miao, C. Zheng, O. Liang, and Y.-H. Xie, Chemical vapor deposition of graphene, in Physics and Applications of Graphene - Experiments. ed. by S. Mikhailov (InTech, London, 2011). https://doi.org/10.5772/15543.

    Chapter  Google Scholar 

  92. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, and E. Tutuc, Science 324, 1312. (2009).

    Article  Google Scholar 

  93. N.G. Shang, P. Papakonstantinou, M. McMullan, M. Chu, A. Stamboulis, A. Potenza, S.S. Dhesi, and H. Marchetto, Adv. Funct. Mater. 18, 3506. (2008).

    Article  Google Scholar 

  94. J. Wang, M. Zhu, R.A. Outlaw, X. Zhao, D.M. Manos, and B.C. Holloway, Carbon 42, 2867. (2004).

    Article  Google Scholar 

  95. M. Choucair, P. Thordarson, and J.A. Stride, Nat. Nanotechnol. 4, 30. (2009).

    Article  Google Scholar 

  96. S. Baloda, Z.A. Ansari, S. Singh, and N. Gupta, IEEE Sens. J. 20, 13302. (2020).

    Article  Google Scholar 

  97. H. M. Soe, A. M. Asrulnizam, M. Atsunori, and M. Mariatti, In: AIP Conference Proceedings (2020), p. 20033.

  98. N.H. Othman, M.C. Ismail, M. Mustapha, N. Sallih, K.E. Kee, and R.A. Jaal, Progr. Org. Coat. 135, 82. (2019).

    Article  Google Scholar 

  99. M. Khan, T. Anwer, and F. Mohammad, J. Sci. Adv. Mater. Devices 4, 132. (2019).

    Article  Google Scholar 

  100. J. Lim, H. Yeo, M. Goh, B.C. Ku, S.G. Kim, H.S. Lee, B. Park, and N.H. You, Chem. Mater. 27, 2040. (2015).

    Article  Google Scholar 

  101. S. Feizi, A. Mehdizadeh, M.A. Hosseini, S.A. Jafari, and P. Ashtari, Nucl. Instr. Methods Phys. Res. Sect. A Accel. Spectro Detect. Assoc. Equip. 940, 72. (2019).

    Article  Google Scholar 

  102. M.W. Ahmad, B. Dey, G. Sarkhel, D.S. Bag, and A. Choudhury, Mater. Chem. Phys. 223, 426. (2019).

    Article  Google Scholar 

  103. P. Ding, S. Su, N. Song, S. Tang, Y. Liu, and L. Shi, Carbon 66, 576. (2014).

    Article  Google Scholar 

  104. A. Kausar, J. Plast. Film Sheet. 36, 151. (2020).

    Article  Google Scholar 

  105. M.R. Saeb, and P. Zarrintaj, Fundamentals and Emerging Applications of Polyaniline (Elsevier, Amsterdam, 2019), pp 165–175.

    Book  Google Scholar 

  106. B. Adak, M. Joshi, and B.S. Butola, Compos. Part B: Eng. 176, 107303. (2019).

    Article  Google Scholar 

  107. W. Mahmoud, Eur. Polym. J. 47, 1534. (2011).

    Article  Google Scholar 

  108. N.M. Nordin, Y.F. Buys, H. Anuar, M.H. Ani, and M.M. Pang, Mater. Today: Proc. 17, 500. (2019).

    Google Scholar 

  109. M. Shafiei, I. Ghasemi, S. Gomari, A. Abedini, and R. Jamjah, Phys. Status Solidi (A) 218, 2100361. (2021).

    Article  Google Scholar 

  110. X. Zhang, A.C. Coleman, N. Katsonis, W.R. Browne, B.J. van Wees, and B.L. Feringa, Chem. Commun. 46, 7539. (2010).

    Article  Google Scholar 

  111. R.L.M. Sofla, M. Rezaei, A. Babaie, and M. Nasiri, Compos. Part B: Eng. 175, 107090. (2019).

    Article  Google Scholar 

  112. Ö.B. Mergen, E. Umut, E. Arda, and S. Kara, Polym. Test. 90, 106682. (2020).

    Article  Google Scholar 

  113. M. Aslam, M. Kalyar, and Z. Raza, Polym. Eng. Sci. 58, 2119. (2018).

    Article  Google Scholar 

  114. S.A. Bansal, A.P. Singh, and S. Kumar, Int. J. Appl. Mech. 10, 1850072. (2018).

    Article  Google Scholar 

  115. F. Duan, Y. Liao, Z. Zeng, H. Jin, L. Zhou, Z. Zhang, and Z. Su, Compos. Sci. Technol. 174, 42. (2019).

    Article  Google Scholar 

  116. Y. Zare, H. Garmabi, and K.Y. Rhee, Polym. Test. 66, 189. (2018).

    Article  Google Scholar 

  117. J.K.Y. Lee, N. Chen, S. Peng, L. Li, L. Tian, N. Thakor, and S. Ramakrishna, Progr. Polym. Sci. 86, 40. (2018).

    Article  Google Scholar 

  118. A. Kausar, Adv. Mater. Sci. 20, 5. (2020).

    Article  Google Scholar 

  119. X. Wang, X. Liu, and D.W. Schubert, Nanomicro Lett. 13, 1. (2021).

    Google Scholar 

  120. M.L. Dias, R.M.M. Dip, D.H.S. Souza, J.P. Nascimento, A.P. Santos, and C.A. Furtado, J. Nanosci. Nanotechnol. 17, 2531. (2017).

    Article  Google Scholar 

  121. H. Abdali and A. Ajji, Polymers (Basel) 9, 453. (2017).

    Article  Google Scholar 

  122. L. Albañil-Sanchez, A. Romo-Uribe, A. Flores, and R. Cruz-Silva, MRS Proc. Library (OPL) 1453, (2012). https://doi.org/10.1557/opl.2012.1110.

  123. S. Ehteshami, A. Feizbakhsh, A.H.M. Sarrafi, H.A. Panahi, and A. Roostaie, Anal. Methods 10, 2123. (2018).

    Article  Google Scholar 

  124. G. Hu, J. Kang, L.W.T. Ng, X. Zhu, R.C.T. Howe, C.G. Jones, M.C. Hersam, and T. Hasan, Chem. Soc. Rev. 47, 3265. (2018).

    Article  Google Scholar 

  125. A.T. Lawal, Cogent Chem. 6, 1833476. (2020).

    Article  Google Scholar 

  126. Y.F. Yang, L.Q. Tao, Y. Pang, H. Tian, Z.Y. Ju, X.M. Wu, Y. Yang, and T.L. Ren, Nanoscale 10, 11524. (2018).

    Article  Google Scholar 

  127. S. Peng, S. Wu, F. Zhang, and C.H. Wang, Adv. Mater. Technol. 4(7), 1900060. (2019).

    Article  Google Scholar 

  128. S. Laurenzi, M. Clausi, F. Zaccardi, U. Curt, and M.G. Santonicola, Acta Astronaut. 159, 429. (2019).

    Article  Google Scholar 

  129. D. Sethy, S. Makireddi, F.V. Varghese, and K. Balasubramaniam, Express Polym. Lett. 13, 1018. (2019).

    Article  Google Scholar 

  130. M. Fortunato, I. Bellagamba, F. Marra, A. Tamburrano, and M. S. Sarto, In: 2020 IEEE 20th International Conference on Nanotechnology (IEEE-NANO) (2020), pp. 176–179.

  131. H. Wu, W.P. Fahy, S. Kim, H. Kim, N. Zhao, L. Pilato, A. Kafi, S. Bateman, and J.H. Koo, Progr. Mater. Sci. 111, 100638. (2020).

    Article  Google Scholar 

  132. Y. Li, Z. Feng, L. Huang, K. Essa, E. Bilotti, H. Zhang, T. Peijs, and L. Hao, Compos. Part A: Appl. Sci. Manuf. 124, 105483. (2019).

    Article  Google Scholar 

  133. A.Z. Trimble and M.N.G. Nejhad, Structure and Properties of Additive Manufactured Polymer Components (Elsevier, Amsterdam, 2020), pp 87–113.

    Book  Google Scholar 

  134. A.C. de Leon, B.J. Rodier, C. Bajamundi, A. Espera Jr., P. Wei, J.G. Kwon, J. Williams, F. Ilijasic, R.C. Advincula, and E. Pentzer, ACS Appl. Energy Mater. 1, 1726. (2018).

    Article  Google Scholar 

  135. C. Shuai, P. Feng, C. Gao, X. Shuai, T. Xiao, and S. Peng, RSC Adv. 5, 25416. (2015).

    Article  Google Scholar 

  136. X. Shen, M. Chu, F. Hariri, G. Vedula, and H.E. Naguib, Add. Manuf. 36, 101565. (2020).

    Google Scholar 

  137. K. Prashantha and F. Roger, J. Macromol. Sci. Part A 54(1), 24. (2017).

    Article  Google Scholar 

  138. M. Al-Rubaiai, R. Tsuruta, U. Gandhi, C. Wang, and X. Tan, Smart Mater. Struct. 28, 84001. (2019).

    Article  Google Scholar 

  139. J. Bustillos, D. Montero, P. Nautiyal, A. Loganathan, B. Boesl, and A. Agarwal, Polym. Compos. 39, 3877. (2018).

    Article  Google Scholar 

  140. D. Lin, S. Jin, F. Zhang, C. Wang, Y. Wang, C. Zhou, and G.J. Cheng, Nanotechnology 26, 434003. (2015).

    Article  Google Scholar 

  141. H. Han and S. Cho, Polymers (Basel) 10, 1003. (2018).

    Article  Google Scholar 

  142. M. Amjadi, K.-U. Kyung, I. Park, and M. Sitti, Adv. Funct. Mater. 26, 1678. (2016).

    Article  Google Scholar 

  143. T. Nguyen and M. Khine, Polymers (Basel) 12, 1. (2020).

    Google Scholar 

  144. N. Afsarimanesh, A. Nag, S. Sarkar, G.S. Sabet, T. Han, and S.C. Mukhopadhyay, Sens. Actuators A: Phys. 315, 112355. (2020).

    Article  Google Scholar 

  145. W. Luo, M. Charara, M.C. Saha, and Y. Liu, Appl. Nanosci. 9, 1309. (2019).

    Article  Google Scholar 

  146. J. Liu, Z. Liu, M. Li, Y. Zhao, G. Shan, M. Hu, and D. Zheng, Compos. Part B Eng. 168, 175. (2019).

    Article  Google Scholar 

  147. J. Park, W. Hyun, S. Mun, Y. Park, and O. Park, ACS Appl. Mater. Interfaces 7, 6317. (2015).

    Article  Google Scholar 

  148. J. Zhang, M. Wang, Z. Yang, and X. Zhang, Carbon 176, 139. (2021).

    Article  Google Scholar 

  149. P. Costa, S. Ribeiro, and S. Lanceros-Mendez, Compos. Sci. Technol. 109, 1. (2015).

    Article  Google Scholar 

  150. W. Luo, X. Hu, C. Wang, and Q. Li, Int. J. Mech. Sci. 52, 168. (2010).

    Article  Google Scholar 

  151. I. Q. C. L. Pérez, Efecto Del Contenido de Segmentos Rígidos En Las Propiedades Piezorresistivas de Poliuretanos Segmentados Modificados Con Nanotubos de Carbono, Tesis Doctoral, (2014).

  152. Y. Zhang, X. Zhu, Y. Liu, L. Liu, Q. Xu, H. Liu, W. Wang, and L. Chen, Macromol. Mater. Eng. 306, 2100113. (2021).

    Article  Google Scholar 

  153. X. Cui, Y. Jiang, Z. Xu, M. Xi, Y. Jiang, P. Song, Y. Zhao, and H. Wang, Compos. Part B: Eng. 211, 108641. (2021).

    Article  Google Scholar 

  154. H. Yang, X. Yao, Z. Zheng, L. Gong, L. Yuan, Y. Yuan, and Y. Liu, Compos. Sci. Technol. 167, 371. (2018).

    Article  Google Scholar 

  155. Y.R. Jeong, H. Park, S.W. Jin, S.Y. Hong, S.-S. Lee, and J.S. Ha, Adv. Funct. Mater. 25, 4228. (2015).

    Article  Google Scholar 

  156. J. Ma, P. Wang, H. Chen, S. Bao, W. Chen, and H. Lu, ACS Appl. Mater. Interfaces 11, 8527. (2019).

    Article  Google Scholar 

  157. G. Shi, S.E. Lowe, A.J.T. Teo, T.K. Dinh, S.H. Tan, J. Qin, Y. Zhang, Y.L. Zhong, and H. Zhao, Appl. Mater. Today 16, 482. (2019).

    Article  Google Scholar 

  158. D. Wang, B. Sheng, L. Peng, Y. Huang, and Z. Ni, Polymers (Basel) 11, 1433. (2019).

    Article  Google Scholar 

  159. S. Han, X. Zhang, P. Wang, J. Dai, G. Guo, Q. Meng, and J. Ma, Polym Test 98, 107178. (2021).

    Article  Google Scholar 

  160. H.C. Bidsorkhi, A.G. D’Aloia, A. Tamburrano, G. De Bellis, and M.S. Sarto, Sensors 21(16), 5277. (2021).

    Article  Google Scholar 

  161. A. Mehmood, N.M. Mubarak, M. Khalid, P. Jagadish, R. Walvekar, and E.C. Abdullah, Sci. Rep. 10, 1. (2020).

    Article  Google Scholar 

  162. D. Zhang, S. Xu, X. Zhao, W. Qian, C.R. Bowen, and Y. Yang, Adv. Funct. Mater. 30, 1910809. (2020).

    Article  Google Scholar 

  163. J. Shintake, E. Piskarev, S.H. Jeong, and D. Floreano, Adv. Mater. Technol. 3, 1700284. (2018).

    Article  Google Scholar 

  164. J. Li, L. Fang, B. Sun, X. Li, and S.H. Kang, J. Electrochem. Soc. 167, 37561. (2020).

    Article  Google Scholar 

  165. K. Xu, Y. Lu, S. Honda, T. Arie, S. Akita, and K. Takei, J. Mater. Chem. C 7, 9609. (2019).

    Article  Google Scholar 

  166. I. Rahim, M. Shah, A. Khan, J. Luo, A. Zhong, M. Li, R. Ahmed, H. Li, Q. Wei, and Y. Fu, Sens. Actuators B: Chem. 267, 42. (2018).

    Article  Google Scholar 

  167. R.A.B. John and A.R. Kumar, Inorg. Chem. Commun. 133, 108893. (2021).

    Article  Google Scholar 

  168. X. Sui, J.R. Downing, M.C. Hersam, and J. Chen, Mater. Today 48, 135. (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Universidad Tecnológica de Bolívar under the research project named “Desarrollo de un sensor nanocompuesto de base polimérica para monitoreo de la salud y funcionalidad estructural” (ID: C2019P004), Faculty of Engineering of University of Buenos Aires, Argentina Consejo de Investigaciones Científicas y Tecnológicas (CONICET), and UBACyT 20020150100088BA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo R. Pagnola.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peña-Consuegra, J., Pagnola, M.R., Useche, J. et al. Manufacturing and Measuring Techniques for Graphene-Silicone-Based Strain Sensors. JOM 75, 631–645 (2023). https://doi.org/10.1007/s11837-022-05550-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05550-3

Navigation