Skip to main content
Log in

Preparation of Nano-ZnO Powders from Zinc Slag Oxidation Dust Using a Deep Eutectic Solvent

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Herein, a novel solvent-assisted approach is being proposed to recover Zn as nano-ZnO.powders from zinc slag oxidation dust (ZSOD). Choline chloride–urea–butyl alcohol deep eutectic solvent (ChCl–urea–BA DES) was used as an efficient solvent for selective leaching of Zn from the ZSOD, coupled with water precipitation and calcination, to produce highly porous nano-ZnO powders. The ChCl–urea–BA DES exhibits a high selectivity for Zn and Pb from ZSOD, achieving extraction efficiencies of 78.2% and 91.6%, respectively, after leaching at 80°C for 36 h under a liquid/solid ratio of 50 mL g−1. Afterward, the dissolved Pb was efficiently removed with a residual concentration of 8.6 mg L−1 by cementation with Zn powders at an optimal Zn/Pb2+ molar ratio of 2:1 at 75°C for 2 h. A mixture of ZnO and Zn4(OH)6(CO3)⋅H2O was obtained by adding deionized water to precipitate the purified leaching solvent. The resulting mixtures were then calcined at high temperature to produce nano-ZnO powders, the purity of which was greater than 99.71 wt%. As a novel synthesis method of high value-added functional materials, the ZnO powders exhibited a flower spherical structure packed with ultrathin mesoporous nanosheets, having a thickness of around 10 nm and pore size of 20–40 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Ju, H. Yao, H. Ma, R. Mao, J. Qiu, and C. Chen, Inorg. Chem. Commun. 127, 108496. (2021).

    Article  Google Scholar 

  2. Y.M. Su, W.C. Huang, Y.C. Liu, C.K. Chang, and Y.L. Kuo, Ceram. Int. 43, S694. (2017).

    Article  Google Scholar 

  3. J. Wang, Y. Zhang, K. Cui, T. Fu, J. Gao, S. Hussain, and T.S. AlGarni, J. Cleaner Prod. 298, 126788. (2021).

    Article  Google Scholar 

  4. A. Dutra, P. Paiva, and L. Tavares, Miner. Eng. 19, 478. (2006).

    Article  Google Scholar 

  5. F. Kukurugya, T. Vindt, and T. Havlík, Hydrometallurgy 154, 20. (2015).

    Article  Google Scholar 

  6. Š Langová, J. Riplová, and S. Vallová, Hydrometallurgy 87, 157. (2007).

    Article  Google Scholar 

  7. A.P. Abbott, K.J. Edler, and A.J. Page, J. Chem. Phys. 155, 150401. (2021).

    Article  Google Scholar 

  8. B.B. Hansen, S. Spittle, B. Chen, D. Poe, Y. Zhang, J.M. Klein, A. Horton, L. Adhikari, T. Zelovich, and B.W. Doherty, Chem. Rev. 121, 1232. (2020).

    Article  Google Scholar 

  9. Y. Hou, C. Yao, and W. Wu, Acta Phys. -Chim. Sin. 34, 873. (2018).

    Article  Google Scholar 

  10. A.A. Elgharbawy, M. Hayyan, A. Hayyan, W.J. Basirun, H.M. Salleh, and M.E. Mirghani, Biomass Bioenergy 137, 105550. (2020).

    Article  Google Scholar 

  11. J. Huang, X. Guo, T. Xu, L. Fan, X. Zhou, and S. Wu, J. Chromatogr. A 1598, 1. (2019).

    Article  Google Scholar 

  12. Y. Nahar and S.C. Thickett, Polymers 13, 447. (2021).

    Article  Google Scholar 

  13. H. Qin, X. Hu, J. Wang, H. Cheng, L. Chen, and Z. Qi, Green Energy Environ. 5, 8. (2020).

    Article  Google Scholar 

  14. B. Tang, H. Zhang, and K.H. Row, J. Sep. Sci. 38, 1053. (2015).

    Article  Google Scholar 

  15. D.V. Wagle, H. Zhao, and G.A. Baker, Acc. Chem. Res. 47, 2299. (2014).

    Article  Google Scholar 

  16. A.P. Abbott, G. Capper, D.L. Davies, K.J. McKenzie, and S.U. Obi, J. Chem. Eng. Data 51, 1280. (2006).

    Article  Google Scholar 

  17. A. Bakkar and V. Neubert, J. Alloys Compd. 771, 424. (2019).

    Article  Google Scholar 

  18. S. Wang, C. Xu, Z. Lei, J. Li, J. Lu, Q. Xiang, X. Chen, Y. Hua, and Y. Li, Miner. Eng. 175, 107295. (2022).

    Article  Google Scholar 

  19. H. Gong, J. Hu, J. Wang, C. Ong, and F. Zhu, Sens. Actuators B 115, 247. (2006).

    Article  Google Scholar 

  20. R.V. Kumar, Y. Diamant, and A. Gedanken, Chem. Mater. 12, 2301. (2000).

    Article  Google Scholar 

  21. Z.L. Wang and J. Song, Science 312, 242. (2006).

    Article  Google Scholar 

  22. A.P. Abbott, G. Frisch, J. Hartley, and K.S. Ryder, Green Chem. 13, 471. (2011).

    Article  Google Scholar 

  23. O. Ruiz, C. Clemente, M. Alonso, and F.J. Alguacil, J. Hazard. Mater. 141, 33. (2007).

    Article  Google Scholar 

  24. A.P. Abbott, J. Collins, and I. Dalrymple, Aust. J. Chem. 62, 341. (2009).

    Article  Google Scholar 

  25. R. Hong, T. Pan, J. Qian, and H. Li, Chem. Eng. J. 119, 71. (2006).

    Article  Google Scholar 

  26. M.K. Jha, V. Kumar, and R. Singh, Resour. Conserv. Recycl. 33, 1. (2001).

    Article  Google Scholar 

  27. D. Mondelaers, G. Vanhoyland, H. Van den Rul, J. D’haen, M. Van Bael, J. Mullens, and L. Van Poucke, Mater. Res. Bull. 37, 901. (2002).

    Article  Google Scholar 

  28. A. Moulahi, F. Sediri, and N. Gharbi, Mater. Res. Bull. 47, 667. (2012).

    Article  Google Scholar 

  29. J. Moghaddam, R. Sarraf-Mamoory, M. Abdollahy, and Y. Yamini, Sep. Purif. Technol. 51, 157. (2006).

    Article  Google Scholar 

  30. S. Sharma, G.K. Agarwal, and N.N. Dutta, J. Mater. Cycles Waste Manage. 22, 1509. (2020).

    Article  Google Scholar 

  31. F. Yusubov, Tribol. Ind. 43, 489. (2021).

    Article  Google Scholar 

  32. A. Kalyon, M. Günay, and D. Özyürek, Adv. Manuf. 6, 419. (2018).

    Article  Google Scholar 

  33. L. Qiang, I.S. Pinto, and Z. Youcai, J. Cleaner Prod. 84, 663. (2014).

    Article  Google Scholar 

  34. F. Yu, Y. Wu, J. Ma, and C. Zhang, J. Environ. Sci. 25, 195. (2013).

    Article  Google Scholar 

  35. J. Kasperek, D. Verchere, D. Jacquet, and N. Phillips, Mater. Chem. Phys. 56, 205. (1998).

    Article  Google Scholar 

  36. N.M. Al-Hada, E.B. Saion, A.H. Shaari, M.A. Kamarudin, M.H. Flaifel, S.H. Ahmad, and S.A. Gene, PLoS ONE 9, e103134. (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51764027) and Independent Project of the State Key Laboratory of Complex Nonferrous Metal Resources Cleaning Utilization (CNMRCUKF1901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cunying Xu.

Ethics declarations

Conflict of interest

The authors declare that they do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 169 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xu, C., Wang, S. et al. Preparation of Nano-ZnO Powders from Zinc Slag Oxidation Dust Using a Deep Eutectic Solvent. JOM 74, 4746–4754 (2022). https://doi.org/10.1007/s11837-022-05536-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05536-1

Navigation