Skip to main content
Log in

Effect of Graphene Morphology on the Microstructure, Mechanical and Tribological Behavior of Nickel Matrix Composites

  • Advances in Surface Engineering
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Nickel matrix composites reinforced with graphene exhibiting different morphology (i.e., shape and size) with varying content (0.5 and 1 wt.%) have been prepared using ball-milling and the spark plasma sintering technique. The graphene-based reinforcements used in this study were procured from different sources, processed using different techniques, and varied in shape, size, and structural features. The effect of graphene morphology on the microstructure, mechanical properties, and tribological behavior of these composites has been investigated. The results reveal excellent enhancement in the tensile yield strength, reduction in grain size, and coefficient of friction of the composites after incorporating the graphene-based reinforcing material in the nickel matrix. The influence of different types of reinforcement varying in size, surface, and structure on their dispersal and the resultant effect on the properties are discussed. Scanning electron microscopy and energy dispersive spectroscopy were used to investigate the fracture surface and wear tracks for further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. D.B. Miracle, Compos. Sci. Technol. 65(15–16), 2526. https://doi.org/10.1016/j.compscitech.2005.05.027 (2005).

    Article  Google Scholar 

  2. S.R. Bakshi, D. Lahiri, and A. Agarwal, Int. Mater. Rev. 55(1), 41. https://doi.org/10.1179/095066009X12572530170543 (2010).

    Article  Google Scholar 

  3. I.A. Ibrahim, F.A. Mohamed, and E.J. Lavernia, J. Mater. Sci. 26, 1137. https://doi.org/10.1007/BF00544448 (1991).

    Article  Google Scholar 

  4. T. Borkar, J. Sosa, J.Y. Hwang, T.W. Scharf, J. Tiley, H. Fraser, and R. Banerjee, JOM 66(6), 935. https://doi.org/10.1007/s11837-014-0907-1 (2014).

    Article  Google Scholar 

  5. S. Suarez, F. Soldera, C.G. Oliver, D. Acevedo, and F. Mücklich, Adv. Eng. Mater. 14(7), 499. https://doi.org/10.1002/adem.201200100 (2012).

    Article  Google Scholar 

  6. S. Suarez, F. Lasserre, O. Prat, and F. Mücklich, Phys. Status Solidi 211, 1555. https://doi.org/10.1002/pssa.201431018 (2014).

    Article  Google Scholar 

  7. L. Reinert, S. Suárez, and A. Rosenkranz, Lubricants 4(2), 11. https://doi.org/10.3390/lubricants4020011 (2016).

    Article  Google Scholar 

  8. L. Reinert, M. Zeiger, S. Suárez, V. Presser, and F. Mücklich, Rsc Adv. 5(115), 95149. https://doi.org/10.1039/C5RA14310A (2015).

    Article  Google Scholar 

  9. A. Patil, M.S.K.K.Y. Nartu, F. Ozdemir, R. Banerjee, R.K. Gupta, and T. Borkar, J. Alloys Compd. 876, 159981. https://doi.org/10.1016/j.jallcom.2021.159981 (2021).

    Article  Google Scholar 

  10. S. Suarez, L. Reinert, M. Zeiger, P. Miska, S. Grandthyll, F. Müller, V. Presser, and F. Mücklich, Carbon 129, 631. https://doi.org/10.1016/j.carbon.2017.12.072 (2018).

    Article  Google Scholar 

  11. K. Fu, X. Zhang, C. Shi, E. Liu, F. He, J. Li, and C. He, Mater. Sci. Eng. A 715, 108. https://doi.org/10.1016/j.msea.2017.12.101 (2018).

    Article  Google Scholar 

  12. A. Patil, M.S.K.K.Y. Nartu, F. Ozdemir, R. Banerjee, R.K. Gupta, and T. Borkar, Mater. Sci. Eng. A 817, 141324. https://doi.org/10.1016/j.msea.2021.141324 (2021).

    Article  Google Scholar 

  13. S. Zhou, W. Zhang, M. Liu, W. Ren, Y. Yang, Q. Zhou, and L. Shi, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2022.165676 (2022).

    Article  Google Scholar 

  14. T. Borkar, J. Hwang, J.Y. Hwang, T.W. Scharf, J. Tiley, S.H. Hong, and R. Banerjee, J. Mater. Res 29(06), 761. https://doi.org/10.1557/jmr.2014.53 (2014).

    Article  Google Scholar 

  15. A.K. Geim, Science 324(5934), 1530. https://doi.org/10.1126/science.1158877 (2009).

    Article  Google Scholar 

  16. C. Lee, X. Wei, J.W. Kysar, and J. Hone, Science 321(5887), 385. https://doi.org/10.1126/science.1157996 (2008).

    Article  Google Scholar 

  17. S.C. Tjong, Mater. Sci. Eng. R Rep. 74(10), 281. https://doi.org/10.1016/j.mser.2013.08.001 (2013).

    Article  Google Scholar 

  18. X. Du, W. Du, Z. Wang, K. Liu, and S. Li, Mater. Sci. Eng. A 711, 633. https://doi.org/10.1016/j.msea.2017.11.040 (2018).

    Article  Google Scholar 

  19. A. Nieto, D. Lahiri, and A. Agarwal, Carbon 50(11), 4068. https://doi.org/10.1016/j.carbon.2012.04.054 (2012).

    Article  Google Scholar 

  20. M. Tabandeh-Khorshid, E. Omrani, P.L. Menezes, and P.K. Rohatgi, Eng. Sci. Technol. Int. J. 19(1), 463. https://doi.org/10.1016/j.jestch.2015.09.005 (2016).

    Article  Google Scholar 

  21. Z. Xu, X. Shi, W. Zhai, J. Yao, S. Song, and Q. Zhang, Carbon 67, 168. https://doi.org/10.1016/j.carbon.2013.09.077 (2014).

    Article  Google Scholar 

  22. G. Lu, X. Shi, X. Liu, H. Zhou, Y. Chen, Z. Yang, and Y. Huang, Wear 428, 417. https://doi.org/10.1016/j.wear.2019.04.009 (2019).

    Article  Google Scholar 

  23. J. Wang, Z. Li, G. Fan, H. Pan, Z. Chen, and D. Zhang, Scr. Mater. 66(8), 594. https://doi.org/10.1016/j.scriptamat.2012.01.012 (2012).

    Article  Google Scholar 

  24. S. Guo, X. Zhang, C. Shi, E. Liu, C. He, F. He, and N. Zhao, Powder Technol. 362, 126. https://doi.org/10.1016/j.powtec.2019.11.121 (2020).

    Article  Google Scholar 

  25. A. Nieto, A. Bisht, D. Lahiri, C. Zhang, and A. Agarwal, Int. Mater. Rev. 62(5), 241. https://doi.org/10.1080/09506608.2016.1219481 (2017).

    Article  Google Scholar 

  26. Z. Hu, G. Tong, D. Lin, C. Chen, H. Guo, J. Xu, and L. Zhou, Mater. Sci. Technol. 32(9), 930. https://doi.org/10.1080/02670836.2015.1104018 (2016).

    Article  Google Scholar 

  27. W.X. Chen, J.P. Tu, L.Y. Wang, H.Y. Gan, Z.D. Xu, and X.B. Zhang, Carbon 41(2), 215. https://doi.org/10.1016/S0008-6223(02)00265-8 (2003).

    Article  Google Scholar 

  28. V.N. Popov, Mater. Sci. Eng. R Rep. 43(3), 61. https://doi.org/10.1016/j.mser.2003.10.001 (2004).

    Article  Google Scholar 

  29. R. Ranjan, and V. Bajpai, J. Compos. Mater. 55(17), 2369. https://doi.org/10.1177/0021998320988566 (2021).

    Article  Google Scholar 

  30. A. Patil, G. Walunj, F. Ozdemir, R.K. Gupta, and T. Borkar, Materials 14(13), 3536. https://doi.org/10.3390/ma14133536 (2021).

    Article  Google Scholar 

  31. M. Li, H. Gao, J. Liang, S. Gu, W. You, D. Shu, and B. Sun, Mater. Charact. 140, 172. https://doi.org/10.1016/j.matchar.2018.04.007 (2018).

    Article  Google Scholar 

  32. B. Xiong, K. Liu, Q. Yan, W. Xiong, and X. Wu, J. Alloys Compd. 837, 155495. https://doi.org/10.1016/j.jallcom.2020.155495 (2020).

    Article  Google Scholar 

  33. M. Rashad, F. Pan, J. Zhang, and M. Asif, J. Alloys Compd. 646, 223. https://doi.org/10.1016/j.jallcom.2015.06.051 (2015).

    Article  Google Scholar 

  34. A.K. Shukla, N. Nayan, S.V.S.N. Murty, K. Mondal, S.C. Sharma, K.M. George, and S.R. Bakshi, Mater. Charact. 84, 58. https://doi.org/10.1016/j.matchar.2013.07.011 (2013).

    Article  Google Scholar 

  35. S.J. Yan, S.L. Dai, X.Y. Zhang, C. Yang, Q.H. Hong, J.Z. Chen, and Z.M. Lin, Mater. Sci. Eng. A 612, 440. https://doi.org/10.1016/j.msea.2014.06.077 (2014).

    Article  Google Scholar 

  36. P. Shao, G. Chen, B. Ju, W. Yang, Q. Zhang, Z. Wang, X. Tan, Y. Pei, S. Zhong, M. Hussain, and G. Wu, Carbon 162, 455. https://doi.org/10.1016/j.carbon.2020.02.080 (2020).

    Article  Google Scholar 

  37. N. Chawla, and K.K. Chawla, JOM 58, 67. https://doi.org/10.1007/s11837-006-0231-5 (2006).

    Article  Google Scholar 

  38. E. Omrani, A.D. Moghadam, P.L. Menezes, and P.K. Rohatgi, Int. J. Adv. Manuf. Technol. 83(1–4), 325. https://doi.org/10.1007/s00170-015-7528-x (2016).

    Article  Google Scholar 

  39. L. Reinert, I. Green, S. Gimmler, B. Lechthaler, F. Mücklich, and S. Suárez, Wear 408, 72. https://doi.org/10.1016/j.wear.2018.05.003 (2018).

    Article  Google Scholar 

  40. K. Munir, C. Wen, and Y. Li, J. Magnesium Alloys 8(1), 269. https://doi.org/10.1016/j.jma.2019.12.002 (2020).

    Article  Google Scholar 

  41. A.D. Moghadam, E. Omrani, P.L. Menezes, and P.K. Rohatgi, Compos. B 77, 402. https://doi.org/10.1016/j.compositesb.2015.03.014 (2015).

    Article  Google Scholar 

  42. V.N. Popov, Mater. Sci. Eng. R. Rep. 43(3), 61. https://doi.org/10.1016/j.mser.2003.10.001 (2004).

    Article  Google Scholar 

  43. I.W. Frank, D.M. Tanenbaum, A.M. van der Zande, and P.L. McEuen, J. Vac. Sci. Technol. B Microelectron. Nanometer. Struct.-Process Meas. Phenom. 25(6), 2558. https://doi.org/10.1116/1.2789446 (2007).

    Article  Google Scholar 

  44. T.J. Dawidczyk, H. Kong, and H.E. Katz, Handbook of organic materials for optical and (opto) electronic devices: properties and applications, ed. Oksana Ostroverkhova (Woodhead Publishing, Cambridge, 2013), p. 577

  45. C. Peng, and X. Zhang, Chemistry 3(3), 873. https://doi.org/10.3390/chemistry3030064 (2021).

    Article  Google Scholar 

  46. V.B. Mohan, K.T. Lau, D. Hui, and D. Bhattacharyya, Compos. B 142, 200. https://doi.org/10.1016/j.compositesb.2018.01.013 (2018).

    Article  Google Scholar 

  47. A.A. Green, and M.C. Hersam, J. Phys. Chem. Lett. 1, 544. https://doi.org/10.1021/jz900235f (2010).

    Article  Google Scholar 

  48. M. Lotya, Y. Hernandez, P.J. King, R.J. Smith, V. Nicolosi, L.S. Karlsson, F.M. Blighe, S. De, Z. Wang, I.T. McGovern, and G.S. Duesberg, J. Am. Chem. Soc. 131(10), 3611. https://doi.org/10.1021/ja807449u (2009).

    Article  Google Scholar 

  49. J. Huang, H. Chen, L. Jing, D. Fam, and A.I.Y. Tok, Biomed. Microdevices 18(4), 1. https://doi.org/10.1007/s10544-016-0082-y (2016).

    Article  Google Scholar 

  50. M. Ioniţă, G.M. Vlăsceanu, A.A. Watzlawek, S.I. Voicu, J.S. Burns, and H. Iovu, Compos. B 121, 34. https://doi.org/10.1016/j.compositesb.2017.03.031 (2017).

    Article  Google Scholar 

  51. H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud’homme, R. Car, D.A. Saville, and I.A. Aksay, J. Phys. Chem. B 110(17), 8535. https://doi.org/10.1021/jp060936f (2006).

    Article  Google Scholar 

  52. Y.I. Rabinovich, J.J. Adler, A. Ata, R.K. Singh, and B.M. Moudgil, J. Colloid Interface Sci. 232(1), 10. https://doi.org/10.1006/jcis.2000.7167 (2000).

    Article  Google Scholar 

  53. F.W. DelRio, M.P. de Boer, J.A. Knapp, E. David Reedy, P.J. Clews, and M.L. Dunn, Nat. Mater. 4(8), 629. https://doi.org/10.1038/nmat1431 (2005).

    Article  Google Scholar 

  54. M. Paradise, and T. Goswami, Mater. Design 28(5), 1477. https://doi.org/10.1016/j.matdes.2006.03.008 (2007).

    Article  Google Scholar 

  55. L. Ci, Z. Ryu, N.Y. Jin-Phillipp, and M. Rühle, Acta Mater. 54(20), 5367. https://doi.org/10.1016/j.actamat.2006.06.031 (2006).

    Article  Google Scholar 

  56. S. Cho, K. Kikuchi, and A. Kawasaki, Acta Mater. 60(2), 726. https://doi.org/10.1016/j.actamat.2011.09.056 (2012).

    Article  Google Scholar 

  57. L.Y. Chen, H. Konishi, A. Fehrenbacher, C. Ma, J.Q. Xu, H. Choi, H.F. Xu, F.E. Pfefferkorn, and X.C. Li, Scr. Mater. 67(1), 29. https://doi.org/10.1016/j.scriptamat.2012.03.013 (2012).

    Article  Google Scholar 

  58. JCPDS Card No: 87–0712, www.icdd.com

  59. D. Zhang, and Z. Zhan, J. Alloys Compd. 654, 226. https://doi.org/10.1016/j.jallcom.2015.09.013 (2016).

    Article  Google Scholar 

  60. A. Naseer, F. Ahmad, M. Aslam, B.H. Guan, W.S.W. Harun, N. Muhamad, M.R. Raza, and R.M. German, Mater. Manuf. Processes 34(9), 957. https://doi.org/10.1080/10426914.2019.1615080 (2019).

    Article  Google Scholar 

  61. A. Talapatra, and D. Datta, Compos. Interfaces 28(4), 395. https://doi.org/10.1080/09276440.2020.1783943 (2021).

    Article  Google Scholar 

  62. K. Yang, F. Zhang, Y. Chen, H. Zhang, B. Xiong, and H. Chen, Compos. Part A Appl. Sci. Manuf. 106906, 1. https://doi.org/10.1016/j.compositesa.2022.106906 (2022).

    Article  Google Scholar 

  63. G. Lin, Y. Peng, Z. Dong, and D.B. Xiong, Compos. Commun. 25, 100777. https://doi.org/10.1016/j.coco.2021.100777 (2021).

    Article  Google Scholar 

  64. M. Shahin, K. Munir, C. Wen, and Y. Li, J. Magnes. Alloys 9(3), 895. https://doi.org/10.1016/j.jma.2020.10.001 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by US Air Force Office of Scientific Research (AFOSR) under Grant No. FA9550-19-1-0325.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tushar Borkar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, A., Nartu, M.S.K.K.Y., Ozdemir, F. et al. Effect of Graphene Morphology on the Microstructure, Mechanical and Tribological Behavior of Nickel Matrix Composites. JOM 74, 4583–4596 (2022). https://doi.org/10.1007/s11837-022-05532-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05532-5

Navigation