Skip to main content
Log in

Numerical Simulation and Industrial Experiment of the Fluid Flow and Heat Transfer in Large Vertical Round Billets with Helical Final Electromagnetic Stirring

  • High-Temperature Phases and Processes for Enabling Cleaner Production of Metals and Energy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The effect of a helical electromagnetic stirring on the magnetic field, liquid steel flow, and heat transfer in 800-mm-diameter vertical round billets has been studied by numerical simulation, and its effectiveness in improving the internal defects has been verified by industrial experiments. The results show that the electromagnetic force drives the liquid steel to produce tangential rotating flow, which is concentrated in the liquid core. The X-velocity value increases first and then decreases at frequencies in the range 1–9 Hz, reaching its maximum value when f = 7 Hz. The higher the current intensity, the stronger the liquid steel flow. The flow range increases and the gradient of X-velocity decreases with the increase of current intensity. The heat transfer of the liquid core interacts with the flow of liquid steel and the effect is limited by the helical F-EMS current parameters. When F-EMS is not applied, the central porosity is porphyritic and dense, gradually dispersing outwards. After applying the helical F-EMS (I = 600 A, f = 7 Hz), the center porosity is dispersed into small pieces and the stirring traces appear in the mushy zone. The center porosity level was significantly reduced, and the center crack range was decreased on average by 26 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7.
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H.P. Cherukuri and R.E. Johnson, Int. J. Mech. Sci. https://doi.org/10.1016/S0020-7403(00)00059-X (2001).

    Article  Google Scholar 

  2. L.W. Zhang, Z.L. Wang, C.J. Xu, S.L. Li, X.G. Ai and J. Li, Ironmak. Steelmak. https://doi.org/10.1080/03019233.2017.1408244 (2019).

    Article  Google Scholar 

  3. P. Pennerstorfe, H. Thöne and F. Wimmer, Chernye Metally 11, 60. ((in Russian)) (2014).

    Google Scholar 

  4. H.P. Liu, Z.Y. Wang and H. Qiu, ISIJ Int. https://doi.org/10.2355/isijinternational.ISIJINT-2019-738 (2020).

    Article  Google Scholar 

  5. K.J. Brimacombe and K. Sorimachi, Metall. Trans. B. https://doi.org/10.1007/BF02696937 (1977).

    Article  Google Scholar 

  6. N. Zong, H. Zhang, Y. Liu and Lu. Zhifang, Ironmak. Steelmak. https://doi.org/10.1007/BF02696937 (2019).

    Article  Google Scholar 

  7. Y. Kong, D. Chen, Q. Liu and M. Long, Metals. https://doi.org/10.3390/met9050587 (2019).

    Article  Google Scholar 

  8. C.H.O. Seong-Mook and G. Brian Thomas, JOM. https://doi.org/10.1007/s11837-020-04329-8 (2020).

    Article  Google Scholar 

  9. H. Ma, J. Zhang, R. Cheng and S. Wang, Trans. Indian Inst. Met. https://doi.org/10.1007/s12666-018-1538-y (2019).

    Article  Google Scholar 

  10. Y. Zheng, M. Wu, A. Kharicha and A. Ludwig, Comp. Mater. Sci. https://doi.org/10.1016/j.commatsci.2016.07.017 (2016).

    Article  Google Scholar 

  11. Q.-P. Dong, J.-M. Zhang and X.-K. Zhao, Metall. Res. Technol. https://doi.org/10.1051/metal/2017004 (2017).

    Article  Google Scholar 

  12. B. Rogberg and E.K. Lina, ISIJ Int. https://doi.org/10.2355/isijinternational.ISIJINT-2017-534 (2018).

    Article  Google Scholar 

  13. B. Willers, M. Barna, J. Reiter and S. Eckert, ISIJ Int. https://doi.org/10.2355/isijinternational.ISIJINT-2016-495 (2017).

    Article  Google Scholar 

  14. R. Pardeshi, A.K. Singh and P. Dutta, Numer. Heat Trans. A-Appl. https://doi.org/10.1080/10407780802553961 (2009).

    Article  Google Scholar 

  15. T.T. Natarajan and N. El-Kaddah, Appl. Math. Model. https://doi.org/10.1016/S0307-904X(03)00114-8 (2004).

    Article  Google Scholar 

  16. J.T. Huang, E.G. Wang and J.C. He, J. Iron Steel Res. Int. https://doi.org/10.1007/s11837-003-0111-1 (2003).

    Article  Google Scholar 

  17. M. Barna, Magnetohydrodynamics 53, 571. (2017).

    Article  Google Scholar 

  18. Q. Zhao, X.G. Zhang, C.F. Fang, N. Zhang, Y.B. Han, J.S. Guo and X.G. Hou, Adv. Mater. Res. https://doi.org/10.4028/www.scientific.net/AMR.482-484.1447 (2012).

    Article  Google Scholar 

  19. B.Z. Ren, D.F. Chen, W.T. Xia, H.D. Wang and Z.W. Han, Metals. https://doi.org/10.3390/met8110903 (2018).

    Article  Google Scholar 

  20. Q.T. Guo, T.M. Wang, J.X. Jia, X.F. Wan, D. Cao and G. Zhao, Int. J. Cast Metal Res. https://doi.org/10.1179/1743133612Y.0000000031 (2013).

    Article  Google Scholar 

  21. G. Qing-Tao, L. Xiang-Wei, J. Ji-Xiang, H. Yu-Ping and Z. Huan, Research of helical magnetic field stirring in bloom continuous casting. Paper presented at the 6th International Steelmaking Technology Conference, Beijing, 12–14 May 2015

  22. H.J. Wu, C.J. Xu, H.Y. Jin, Y.L. Gao, X.B. Zhang and Y.K. Jin, Appl. Phys. A-Mater. https://doi.org/10.1007/s00339-022-05257-x (2022).

    Article  Google Scholar 

  23. D.B. Jiang and M.Y. Zhu, Steel Res. Int. https://doi.org/10.1002/srin.201400281 (2015).

    Article  Google Scholar 

  24. W.I. Middleton and E.W. Davis, J. Am. Inst. Elec. Eng. https://doi.org/10.1109/JoAIEE.1921.6594011 (2013).

    Article  Google Scholar 

  25. T.T. Natarajan and N. El-Kaddah, ISIJ Int. https://doi.org/10.2355/isijinternational.38.680 (2007).

    Article  Google Scholar 

  26. S.X. Li, P. Lan, H.Y. Tang, Z.P. Tie and J.Q. Zhang, Steel Res. Int. https://doi.org/10.1002/srin.201800071 (2018).

    Article  Google Scholar 

  27. M. Reza, M. Aboutalebi, R. Hasan and I.L. Guthrie, Metall Mater. Trans. B. https://doi.org/10.1007/BF02651719 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (Grant 51504130) and Henan Province Key S&T Special Projects (151100212700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjun Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Xu, C., Lei, C. et al. Numerical Simulation and Industrial Experiment of the Fluid Flow and Heat Transfer in Large Vertical Round Billets with Helical Final Electromagnetic Stirring. JOM 75, 1439–1449 (2023). https://doi.org/10.1007/s11837-022-05511-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05511-w

Navigation