Skip to main content
Log in

Parametric Optimization of Diffusion Welding Process in Joining of CoCrNi Medium-Entropy Alloys (MEA) and SUS 304 Stainless Steel Using Full Factorial Design

  • Recent Advances in Multicomponent Alloys and Ceramics
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The main objective of this research was to join the CoCrNi medium-entropy allow (MEA(with SUS 304 stainless steel to obtain combinatorial properties that could be suitable for cryogenic applications. The vacuum diffusion welding process was utilized under different processing parameters. Three levels of welding temperatures and bonding time were selected, and the influences of these parameters were investigated using a full factorial design. The weld quality was assessed through ultrasonic testing to examine weld discontinuities and other defects along the weld interface region. Microstructure characterization using SEM scans were also investigated to corroborate the finding of ultrasonic scans. Based upon analysis of variance (ANOVA), the welding temperature was found to have a strong effect on the joint’s shear strength as compared to bonding time, and the interaction of the welding temperature and bonding time was found to be insignificant, while weld interface thickness revealed strong dependency on both the parameters and exhibited a strong interaction between the two parameters. Models to predict the joint’s shear strength and weld interface thickness were also developed using regression analysis. The predictability of the joint’s shear strength was more reliable with only a 7.5% error, while the error associated with the prediction of weld interface thickness was found to be 15.3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Mater. Sci. Eng. A 375–377, 213–218. https://doi.org/10.1016/j.msea.2003.10.257 (2004).

    Article  Google Scholar 

  2. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Adv. Eng. Mater. 6, 299–303. https://doi.org/10.1002/adem.200300567 (2004).

    Article  Google Scholar 

  3. J.-P. Liu, J.-X. Chen, T.-W. Liu, C. Li, Y. Chen, and L.-H. Dai, Scr. Mater. 181, 19–24. https://doi.org/10.1016/j.scriptamat.2020.02.002 (2020).

    Article  Google Scholar 

  4. S.K. Mylavarapu, Design, Fabrication, Performance Testing, and Modeling of Diffusion Bonded Compact Heat Exchangers in a High-Temperature Helium Test Facility (Nuclear Engineering Department, The Ohio State University, 2011).

  5. J. Nestell and T.-L. Sham, ASME Code considerations for the Compact Heat Exchanger (Oak Ridge National Laboratory, 2015). http://www.osti.gov/scitech/.

  6. S.R. Aakre, I.W. Jentz and M.H. Anderson, Nuclear code case development of printed-circuit heat exchangers with thermal and mechanical performance testing. In: Paper presented at the The 6th international supercritical CO2 power cycles symposium, Pittsburgh, Pennsylvania USA (2018).

  7. P. Li, H. Sun, S. Wang, X. Hao, and H. Dong, J. Alloy Compd. 814, 152322. https://doi.org/10.1016/j.jallcom.2019.152322 (2020).

    Article  Google Scholar 

  8. H. Nam, S. Park, E.-J. Chun, H. Kim, Y. Na, and N. Kang, Sci. Technol. Weld. Joining 25, 127–134. https://doi.org/10.1080/13621718.2019.1644471 (2019).

    Article  Google Scholar 

  9. J. Guo, C. Tang, G. Rothwell, L. Li, Y.C. Wang, Q. Yang, and X. Ren, Entropy 21, 431. https://doi.org/10.3390/e21040431 (2019).

    Article  Google Scholar 

  10. Z.G. Zhu, Y.F. Sun, M.H. Goh, F.L. Ng, Q.B. Nguyen, H. Fujii, S.M.L. Nai, J. Wei, and C.H. Shek, Mater. Lett. 205, 142–144. https://doi.org/10.1016/j.matlet.2017.06.073 (2017).

    Article  Google Scholar 

  11. N. Kashaev, V. Ventzke, N. Stepanov, D. Shaysultanov, V. Sanin, and S. Zherebtsov, Intermetallics 96, 63–71. https://doi.org/10.1016/j.intermet.2018.02.014 (2018).

    Article  Google Scholar 

  12. D.E. Clark and R.E. Mizia, Diffusion Welding of Alloys for Molten Salt Service – Status Report (Idaho National Laboratory, 2012). http://www.inl.gov.

  13. L. Chai, and S.A. Tassou, Therm. Sci. Eng. Prog. 18, 100543. https://doi.org/10.1016/j.tsep.2020.100543 (2020).

    Article  Google Scholar 

  14. B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H. Bei, Z. Wu, E.P. George, and R.O. Ritchie, Nat. Commun. 7, 10602. https://doi.org/10.1038/ncomms10602 (2016).

    Article  Google Scholar 

  15. D. Xu, M. Wang, T. Li, X. Wei, and Y. Lu, Microstructures 2, 2022001. (2022).

    Article  Google Scholar 

  16. Z. Wu, H. Bei, F. Otto, G.M. Pharr, and E.P. George, Intermetallics 46, 131–140. https://doi.org/10.1016/j.intermet.2013.10.024 (2014).

    Article  Google Scholar 

  17. P. Li, S. Wang, Y. Xia, X. Hao, and H. Dong, J. Mater. Sci. Technol. (Shenyang China) 45, 59–69. https://doi.org/10.1016/j.jmst.2019.10.041 (2020).

    Article  Google Scholar 

  18. C. Lin, R.-K. Shiue, S.-K. Wu, J.-Y. Huang, and Y.-C. Huang, Gold Bull. 53, 101–109. https://doi.org/10.1007/s13404-020-00278-x (2020).

    Article  Google Scholar 

  19. P. Li, H. Sun, S. Wang, Y. Xia, H. Dong, G. Wen, and H. Zhang, Mater. Sci. Eng. A 793, 139843. https://doi.org/10.1016/j.msea.2020.139843 (2020).

    Article  Google Scholar 

  20. A.K. Srirangan, and S. Paulraj, JESTECH 19, 811–817. https://doi.org/10.1016/j.jestch.2015.10.003 (2016).

    Article  Google Scholar 

  21. A. Kumar, and S. Sundarrajan, Int. J. Adv. Manuf. Technol. 42, 118–125. (2009).

    Article  Google Scholar 

  22. D.R. Alba, A. Roos, G. Wimmer, A.R. Gonzalez, S. Hanke, and J.F.D. Santos, J. Mater. Res. Technol. 8, 1701–1711. https://doi.org/10.1016/j.jmrt.2018.11.012 (2019).

    Article  Google Scholar 

  23. D.C. Montgomery, Design and analysis of experiments (Wiley, New York, 2019), p 45.

    Google Scholar 

  24. R.M. Khan, Problem solving and data analysis using minitab: A clear and easy guide to six sigma methodology (Wiley, New York, 2013), p 89.

    Book  Google Scholar 

  25. K.Y. Tsai, M.H. Tsai, and J.W. Yeh, Acta Mater. 61, 4887–4897. https://doi.org/10.1016/j.actamat.2013.04.058 (2013).

    Article  Google Scholar 

  26. D.L. Beke, and G. Erdélyi, Mater. Lett. 164, 111–113. https://doi.org/10.1016/j.matlet.2015.09.028 (2016).

    Article  Google Scholar 

  27. Y. Du, Z. Li, J. Xiong, Y. Chen, S. Li, J. Li, and J. Dong, Curr. Comput. Aided Drug Des. 11, 1158. (2021).

    Google Scholar 

  28. T. Song, X. Jiang, Z. Shao, D. Mo, D. Zhu, and M. Zhu, Metals (Basel Switz.) 6, 263. https://doi.org/10.3390/met6110263 (2016).

    Article  Google Scholar 

  29. G. Thirunavukarasu, S. Kundu, B. Mishra, and S. Chatterjee, Metall. Mater. Trans. A 45, 2067–2077. https://doi.org/10.1007/s11661-013-1940-3 (2013).

    Article  Google Scholar 

  30. J. Wang, Y. Li, and Y. Yin, J. Colloid Interface Sci. 285, 201–205. https://doi.org/10.1016/j.jcis.2004.10.071 (2005).

    Article  Google Scholar 

  31. S. Kundu, and G. Thirunavukarasu, Weld. World 60, 793–811. https://doi.org/10.1007/s40194-016-0327-7 (2016).

    Article  Google Scholar 

  32. F.J.G. Silva, J. Santos, and R. Gouveia, Metals (Basel Switz.) 7, 251. (2017).

    Article  Google Scholar 

  33. A. Bjärbo, and M. Hättestrand, Metall. Mater. Trans. A 32, 19–27. https://doi.org/10.1007/s11661-001-0247-y (2001).

    Article  Google Scholar 

  34. S.-X. Li, Y.-N. He, S.-R. Yu, and P.-Y. Zhang, Corros. Sci. 66, 211–216. https://doi.org/10.1016/j.corsci.2012.09.022 (2013).

    Article  Google Scholar 

  35. C.J. Thambiliyagodage, S. Ulrich, P.T. Araujo, and M.G. Bakker, Carbon 134, 452–463. (2018). https://doi.org/10.1016/j.carbon.2018.04.002.

    Article  Google Scholar 

  36. H.J. Goldschmidt (ed.), Interstitial alloys (Elsevier, Oxford, 1967)., pp 88–213.

    Google Scholar 

  37. K. Rashed, A. Kafi, R. Simons, and S. Bateman, Rapid Prototyp. J. https://doi.org/10.1108/RPJ-06-2021-0139 (2022).

    Article  Google Scholar 

  38. D. Sathishkumar, and A.D. Das, Mater. Today: Proc. 37, 621–626. https://doi.org/10.1016/j.matpr.2020.05.624 (2021).

    Article  Google Scholar 

  39. J. Ganjigatti, D. Pratihar, and A. RoyChoudhury, Int. J. Adv. Manuf. Technol. 35, 1166–1190. (2008).

    Article  Google Scholar 

  40. S. Richmire, K. Hall, and M. Haghshenas, J. Magnesium Alloys 6, 215–228. (2018).

    Article  Google Scholar 

  41. P.D.S. Effertz, F. Fuchs, and N. Enzinger, Sci. Technol. Weld. Joining 24, 121–129. (2019).

    Article  Google Scholar 

  42. C.A.G. Aita, I.C. Góss, T.D.S. Rosendo, M. Tier, A. Wiedenhöft, and A. Reguly, J. Mater. Res. Technol. 9, 16072–16079. (2020).

    Article  Google Scholar 

  43. C.D. Pimenta, M.B. Silva, R.L. de Morais-Campos, and W.R. de Campos, AJTAS 7, 35–44. (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinglong Li or Jiangtao Xiong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 658 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samiuddin, M., Li, J., Muzamil, M. et al. Parametric Optimization of Diffusion Welding Process in Joining of CoCrNi Medium-Entropy Alloys (MEA) and SUS 304 Stainless Steel Using Full Factorial Design. JOM 74, 4280–4293 (2022). https://doi.org/10.1007/s11837-022-05500-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05500-z

Navigation