Skip to main content

Advertisement

Log in

A Brief Review on the Chemical Stability and Corrosivity of Magnetocaloric Materials

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Active magnetic regenerative refrigeration is an energy-efficient and environmentally friendly alternative to conventional vapor-compression refrigeration technology, which is associated with harmful chemical refrigerants and high carbon emissions having high ozone-depleting potential. The core component of AMR is a porous magnetocaloric material that undergoes millions of thermal and magnetic field cycles throughout the device's lifetime, while immersed in a heat transfer fluid. Despite significant research spanning almost four decades, the chemical stability of MCMs continues to pose a critical engineering challenge. In this mini-review, research on the corrosion of room-temperature MCMs is discussed. Particular attention is given to Gd, Gd5Si2Ge2, and La(Fe,Si)13 and their compositional variants. Following a brief overview of the wide variety of corrosion monitoring methods used to evaluate magnetocaloric regenerator structures, corrosion inhibition mechanisms are discussed in the context of metallurgical, processing, and environmental factors. Finally, challenges associated with corrosion testing of magnetocaloric structures fabricated via additive manufacturing methods are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Center, Bipartisan Policy, Annual energy outlook 2020. Energy Information Administration, Washington, DC (2020).

  2. M.T.J. Kok and H.C. De Coninck, Environ. Sci. Policy 10, 587 (2007).

    Article  Google Scholar 

  3. M. Balli, S. Jandl, P. Fournier, and A. Kedous-Lebouc, Appl. Phys. Rev. 4(2), 021305 (2017).

    Article  Google Scholar 

  4. V.K. Pecharsky and K.A. Gschneidner Jr., J. Magn. Magn. Mater. 200(1–3), 44 (1999).

    Article  Google Scholar 

  5. P. Weiss and A. Piccard, J. Phys. Theor. Appl. 7(1), 103 (1917).

    Article  Google Scholar 

  6. V.K. Pecharsky and K.A. Gschneidner Jr., Phys. Rev. Lett. 78, 4494 (1997).

    Article  Google Scholar 

  7. C. Zimm, Advances in Cryogenic Engineering (Springer, Boston, MA, 1998), pp 1759–1766.

    Book  Google Scholar 

  8. A. Kitanovski, J. Tušek, U. Tomc, U. Plaznik, M. Ožbolt, and A. Poredoš, Magnetocaloric Energy Conversion (Springer International, Cham, 2016).

    Google Scholar 

  9. R.L. Hadimani, Y. Maly, K. Javed, H. Gracia, Q. Nguyen, and M. Hutton, Magnetocaloric heat exchange device. US Patent Pending-US20190331370A1, (2019).

  10. V. Franco, J.S. Blázquez, J.J.Y. Ipus, L.M. Law, Y. Moreno-Ramírez, and A. Conde, Prog. Mater. Sci. 93, 112 (2018).

    Article  Google Scholar 

  11. Y. Xu, M. Meier, P. Das, M.R. Koblischka, and U. Hartmann, Cryst. Eng. 5, 383 (2002).

    Article  Google Scholar 

  12. K. Engelbrecht, C.R.H. Bahl, and K.K. Nielsen, Int. J. Refrig. 34(4), 1132 (2011).

    Article  Google Scholar 

  13. J. Guo, J. Li, R. Ye, C. Wei, and Y. Long, J. Alloys Compd. 846, 156298 (2020).

    Article  Google Scholar 

  14. K.S. Zhang, J.N. Xue, Y.X. Wang, H. Sun, and Y. Long, AIP Adv. 8(4), 048104 (2017).

    Article  Google Scholar 

  15. J. Hu, L. Guan, S. Fu, Y. Sun, and Y. Long, J. Magn. Magn. Mater. 354, 336 (2013).

    Article  Google Scholar 

  16. K. Javed, S. Gupta, V.K. Pecharsky, and R.L. Hadimani, AIP Adv. 9(3), 035239 (2019).

    Article  Google Scholar 

  17. N. Sun, X. Zhao, Y. Song, R. Liu, J. Guo, Y. Zhang, J. Huang, and Z. Zhang, J. Magn. Magn. Mater. 525, 167685 (2021).

    Article  Google Scholar 

  18. D. Klimecka-Tatar, G. Pawlowska, K. Radomska, and P. Gebara, Mater. Sci. 25(3), 265 (2019).

    Google Scholar 

  19. W.H. Wang, Z.G. Zheng, B. Huang, J.W. Lai, Q. Zhou, L. Lei, and D.C. Zeng, Intermetallics 113, 106539 (2019).

    Article  Google Scholar 

  20. M. Chennabasappa, B. Chevalier, M. Lahaye, C. Labrugere, and O. Toulemonde, J. Alloys Compd. 584, 34 (2013).

    Article  Google Scholar 

  21. J. Xue, Y. Long, Y. Wang, J. Hu, and S. Zong, Mater. Des. 129, 1 (2017).

    Article  Google Scholar 

  22. A. Funk, M. Zeilinger, A. Miehe, D. Sopu, J. Eckert, F. Dötz, and A. Waske, Chem. Eng. Sci. 175, 84 (2018).

    Article  Google Scholar 

  23. M. Chennabasappa, M. Lahaye, B. Chevalier, C. Labrugère, and O. Toulemonde, J. Alloys Comp. 850, 156554 (2021).

    Article  Google Scholar 

  24. M. Hasiak, J.G. Chęcmanowski, B. Kucharska, A. Łaszcz, A. Kolano-Burian, and J. Kaleta, Materials 13(24), 5758 (2020).

    Article  Google Scholar 

  25. X. Zhong, S.H.E.N. Xiaoyan, and L.I.U. Zhongwu, J. Rare Earths 34(9), 889 (2016).

    Article  Google Scholar 

  26. J. Hu, Z. Dong, Y. Shen, B. Fu, and B. Zhang, J. Rare Earths 37(10), 1116 (2019).

    Article  Google Scholar 

  27. X. Zhang, B.T. Lejeune, R. Barua, R.W. McCallum, and L.H. Lewis, J. Alloys Compd. 823, 153693 (2017).

    Article  Google Scholar 

  28. U. Wolff, F. Schneider, K. Mummert, and L. Schultz, Corrosion 56(12), 1195 (2000).

    Article  Google Scholar 

  29. H. Wu, L.I.U. Jian, H. Zhao, Q. Jiang, X.U. Yi, and X.U. Jia, Trans. Nonferrous Met. Soc. China 23(11), 3280 (2013).

    Article  Google Scholar 

  30. A. Gebert, M. Krautz, and A. Waske, Intermetallics 75, 88 (2016).

    Article  Google Scholar 

  31. C. You, S. Wang, J. Zhang, N. Yang, and N. Tian, AIP Adv. 6(5), 055321 (2016).

    Article  Google Scholar 

  32. X. Zhao, P. Fang, Y. Tang, Y. Chen, L. Zhou, and H. Guo, J. Rare Earths 37(6), 633 (2019).

    Article  Google Scholar 

  33. A. Funk, J. Freudenberger, A. Waske, and M. Krautz, Mater. Today Energy 9, 223 (2018).

    Article  Google Scholar 

  34. G. Inzelt, A. Lewenstam, and F. Scholz (eds.), Handbook of Reference Electrodes vol 541. (Springer, Heidelberg, 2013).

    Google Scholar 

  35. P. Gębara, P. Pawlik, E. Kulej, J.J. Wysłocki, K. Pawlik, and A. Przybył, Opt. Appl. 39(4), 761 (2009).

    Google Scholar 

  36. J. Forchelet, L. Zamni, S.E.M. El Alami, J. Hu, M. Balli, and O. Sari, Int. J. Refrig. 37, 307 (2014).

    Article  Google Scholar 

  37. V.S. Saji, A review on recent patents in corrosion inhibitors. Recent Patents on Corrosion Science (2010).

  38. K. Schierle-Arndt, F. Seeler, M. Schwind, and J. Francois, Corrosion inhibitors for Fe2P structure magnetocaloric materials in water. U.S. Patent 9,887,027, issued February 6, 2018.

  39. S. Lionte, A. Barcza, M. Risser, C. Muller, and M. Katter, Int. J. Refrig. 124, 43 (2021).

    Article  Google Scholar 

  40. X. Luo, H. Yang, N. Yu, Q. Wu, Y. Yu, P. Zhang, and H. Ge, Int. J. Electrochem. Sci. 16, 210629 (2021).

    Article  Google Scholar 

  41. B.T. Lejeune, R. Barua, E. Simsek, R.W. McCallum, R.T. Ott, M.J. Kramer, and L.H. Lewis, Materialia 16, 101071 (2021).

    Article  Google Scholar 

  42. K. Navickaitė, J. Liang, C. Bahl, S. Wieland, T. Buchenau, and K. Engelbrecht, Appl. Therm. Eng. 174, 115297 (2020).

    Article  Google Scholar 

  43. E. Stevens, Additive Manufacturing of Magnetocaloric Materials: Assessing and Adapting DLD and BJ3DP Fabrication Methods (Doctoral dissertation), University of Pittsburgh E. (2021).

  44. K. Kimes, A. Mostafaei, E. Stevens, and M. Chmielus, Binder Jet Additive Manufacturing of Magnetocaloric Foams for High-Efficiency Cooling. (Pittsburgh, PA, USA: Ingenium: University of Pittsburgh, 2018), p. 33

  45. X. Miao, W. Wang, H. Liang, F. Qian, M. Cong, Y. Zhang, A. Muhammad, Z. Tian, and F. Xu, J. Mater. Sci. 55(15), 6660 (2020).

    Article  Google Scholar 

  46. J.D. Moore, D. Klemm, D. Lindackers, S. Grasemann, R. Träger, J. Eckert, L. Löber, S. Scudino, M. Katter, A. Barcza, and K.P. Skokov, J. Appl. Phys. 114(4), 043907 (2013).

    Article  Google Scholar 

  47. V. Sharma, L. Balderson, R. Heo, O. Bishop, C.S.M. Hunt, E.E. Carpenter, R.L. Hadimani, H. Zhao, and R. Barua, J. Alloys Compd. 920, 165891 (2022).

    Article  Google Scholar 

  48. W.E. Frazier, J. Mater. Eng. Perform. 23(6), 2014 (1917).

    Google Scholar 

  49. S. Pauly, P. Wang, U. Kühn, and K. Kosiba, Addit. Manuf. 22, 753 (2018).

    Google Scholar 

  50. S. Cao, B. Zhang, Y. Yang, Q. Jia, L. Li, S. Xin, X. Wu, Q. Hu, C. Voon, and S. Lim, J. Alloys Comp. 813, 152247 (2020).

    Article  Google Scholar 

  51. C. Örnek, Corros. Eng. Sci. Technol. 53(7), 531 (2018).

    Article  Google Scholar 

  52. R.L. Hadimani, P. Bartlett, Y. Melikhov, J.E. Snyder, and D.C. Jiles, J. Magn. Magn. Mater. 323(5), 532 (2011).

    Article  Google Scholar 

  53. C.D. Taylor, Corros. Eng. Sci. Technol. 50(7), 490 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Vertically Integrated Projects (VIP) program in the College of Engineering at Virginia Commonwealth University for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhika Barua.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 257 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wojcieszak, S., Wodajo, B., Duong, A. et al. A Brief Review on the Chemical Stability and Corrosivity of Magnetocaloric Materials. JOM 74, 4368–4378 (2022). https://doi.org/10.1007/s11837-022-05495-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05495-7

Navigation