Skip to main content
Log in

Effect of Rolling on Texture Evolution and Recrystallization of Polycrystalline Tantalum

  • Refractory Materials for Corrosive or High Temperature Environments
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Polycrystalline tantalum sheets have been deformed through room-temperature rolling (RTR), accumulative pack-rolling (APR), and cryogenic-rolling (CR), respectively. The fraction of α-texture in the APR-ed samples was relatively higher, while the fraction of γ-texture was slightly lower. The rolled samples have similar microstructure and average grain size regardless of the rolling methods. After annealing at 900°C for 30 min, the recrystallization in the cryogenically rolled samples occurred much more easily, and the average grain size of the samples was 2.5 times larger than that of the room-temperature-rolled samples. With the increasing of annealing time, the fraction of the α-texture in the APR-ed samples decreased dramatically. According to the calculation of the stored energy, cryogenically-rolled samples contained a high dislocation density and stored energy, with values of 11.70 × 1015/m2 and 1.32 J/g, respectively, which could be contributing to its recrystallization during annealing. These findings are of great help in developing polycrystalline tantalum sheets with fine grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.I. Wright, G.T. Gray, and A.D. Rollett, Metall. Trans. A. 25(5), 1025 (1994).

    Google Scholar 

  2. H.R.Z. Sandim, J.P. Martins, A.L. Pinto, and A.F. Padilha, Mater. Sci. Eng. A-Struct. 392(1), 209 (2005).

    Article  Google Scholar 

  3. Y. Liu, S. Liu, C. Deng, H. Fang, X. Yuan, and Q. Liu, J. Mater. Sci. Technol 11(34), 2178 (2018).

    Article  Google Scholar 

  4. J. Zhu, S. Liu, D.D. Long, S.Y. Zhou, Y.L. Zhu, and D. Orlov, Mater. Charact. 168, 110586 (2020).

    Article  Google Scholar 

  5. X. Huang, N. Tsuji, N. Hansen, and Y. Minamino, Mater. Sci. Eng. A-Struct. 340(1–2), 265 (2003).

    Article  Google Scholar 

  6. H. Chang, M. Zheng, K. Wu, W. Gan, L. Tong, and H.G. Brokmeier, Mater. Sci. Eng. A-Struct. 527(27), 7176 (2010).

    Article  Google Scholar 

  7. A. Melaibari, A. Fathy, M. Mansouri, and M.A. Eltaher, J. Alloys Compd. 774, 1123 (2019).

    Article  Google Scholar 

  8. Y. Zhu, L. Zhou, Z. Xiao, W. Qiu, M. Fang, and Z. Chen, Mater. Charact. 163, 110290 (2020).

    Article  Google Scholar 

  9. S.V. Zherebtsov, G.S. Dyakonov, A.A. Salem, V.I. Sokolenko, G.A. Salishchev, and S.L. Semiatin, Acta Mater. 61(4), 1167 (2013).

    Article  Google Scholar 

  10. T. Konkova, S. Mironov, A. Korznikov, and S.L. Semiatin, Acta Mater. 58(16), 5262 (2013).

    Article  Google Scholar 

  11. B. Li, A. Godfrey, Q. Meng, Q. Liu, and N. Hansen, Acta Mater. 52(4), 1069 (2004).

    Article  Google Scholar 

  12. T. Leffers, Int. J. Plast. 17(4), 469 (2001).

    Article  Google Scholar 

  13. T. Leffers, Int. J. Plast. 17(4), 491 (2001).

    Article  Google Scholar 

  14. G. Winther, D.J. Jensen, and N. Hansen, Acta Mater. 45(12), 5059 (1997).

    Article  Google Scholar 

  15. O. Engler and V. Randle, Introduction to Texture Analysis Macrotexture (CRC Press, Boca Raton, 2009).

    Book  Google Scholar 

  16. L.L. Hsiung, Mater. Sci. Eng. A-Struct 528(1), 329 (2010).

    Article  Google Scholar 

  17. E. Bertrand, P. Castany, I. Péron, and T. Gloriant, Scr. Mater. 64(12), 1110 (2011).

    Article  Google Scholar 

  18. B. Bay, N. Hansen, and D. Kuhlmann-Wilsdorf, Mater. Sci. Eng. A-Struct. 113, 385 (1989).

    Article  Google Scholar 

  19. V.S. Ananthan, T. Leffers, and N. Hansen, Mater. Sci. Technol. 7(12), 1069 (1991).

    Article  Google Scholar 

  20. B. Bay, N. Hansen, and D. Kuhlmann-Wilsdorf, Mater. Sci. Eng. A-Struct. 158(2), 139 (1992).

    Article  Google Scholar 

  21. D.A. Hughes and N. Hansen, Metall. Trans. A 24(9), 2022 (1993).

    Article  Google Scholar 

  22. Q. Dai, Z. Liang, J. Wu, L. Meng, and Q. Shi, Acta Metall. Sin. 50(5), 587 (2014).

    Google Scholar 

  23. Z. Zhang, F. Zhou, and E.J. Lavernia, Metall. Trans. A 34(6), 1349 (2003).

    Article  Google Scholar 

  24. M.B. Bever, D.L. Holt, A.L. Titchener, D. Holt, and A. Titchener, Prog. Mater. Sci. 17, 5–177 (1973).

    Article  Google Scholar 

  25. M.Z. Ma, Z. Li, W.T. Qiu, Z. Xiao, Z.Q. Zhao, and Y.B. Jiang, J. Alloys Compd. 788, 50 (2019).

    Article  Google Scholar 

  26. M.Z. Ma, Z. Li, Z. Xiao, H.R. Zhu, X. Zhang, and F.Y. Zhao, Mater. Sci. Eng. A-Struct. 795, 140001 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support by the National Key Research and Development Program of China (2017YFB0305500), Technology Development and Achievements Transformation Program of Hunan Province (2017GK4001), and grants from the Project of State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 761 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Xiao, Z., Li, Z. et al. Effect of Rolling on Texture Evolution and Recrystallization of Polycrystalline Tantalum. JOM 74, 4352–4359 (2022). https://doi.org/10.1007/s11837-022-05479-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05479-7

Navigation