Skip to main content
Log in

Microstructure and Corrosion Behavior of Ultrasonic Surface Treated 7B85 Al Alloy

  • Advances in Surface Engineering
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The microstructure and corrosion behavior of 7B85 Al alloy was investigated systematically by ultrasonic surface rolling treatment (USRT). The results show that the accumulation of large plastic strain leads to the appearance of a high density of dislocation lines and dislocation tangles during the ultrasonic rolling. The USRT alloy has better corrosion behavior, and its corrosion type is typical pitting corrosion, accompanied by stress corrosion. The more positive Epit indicates that the USRT alloy develops a stable surface resistant to pitting. The corrosion products are mainly stable Al2O3 and quasi-stable Al(OH)3. The fine grain and micro-stress caused by dislocation accumulation are helpful for the formation of dense corrosion product films because more stable Al2O3 is formed, which restrains the Cl ions from diffusing into the Al matrix via the localized pits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Dursun and C. Soutis, Mater. Design 56, 862 (2014).

    Article  Google Scholar 

  2. C.C. Nie, Y.C. Huang, H.B. Shao, and J.C. Wen, Vacuum 194, 1105530 (2021).

    Article  Google Scholar 

  3. D. Ashkenazi, Technol. Forecast. Soc. Change 143, 101 (2019).

    Article  Google Scholar 

  4. W.L. Zhang, L.J. He, and P.J. Li, J. Mater. Sci. 55, 13329 (2020).

    Article  Google Scholar 

  5. Q.Q. Zeng, S.S. Zeng, and D.Y. Wang, Inter. J. Min. Met. Mater. 27, 774 (2020).

    Article  Google Scholar 

  6. S.W. Duan, D.T. Wu, W.Y. Liu, J. Chen, T. Wang, and Y. Zou, Vacuum 176, 109299 (2020).

    Article  Google Scholar 

  7. J. Azadmanjiri, C.C. Berndt, A. Kapoor, and C. Wen, Crit. Rev. Solid State Mater. Sci. 40, 164 (2015).

    Article  Google Scholar 

  8. Y. Liu, B. Jin, and J. Lu, Mater. Sci. Eng. A 636, 446 (2015).

    Article  Google Scholar 

  9. X.C. Meng, B. Liu, L. Luo, Y. Ding, X.X. Rao, B. Hu, Y. Liu, and J. Lu, J. Mater. Sci. Technol. 34, 2307 (2018).

    Article  Google Scholar 

  10. Q.Q. Sun, Q.Y. Han, R. Xu, K.J. Zhao, and J. Li, Corros. Sci. 130, 218 (2018).

    Article  Google Scholar 

  11. Q.Q. Sun, R. Xu, Q.Y. Han, K.J. Zhao, I. McAdams, and W. Xu, Appl. Mater. Today 14, 137 (2019).

    Article  Google Scholar 

  12. V. Pandey, K. Chattopadhyay, N.C. Santhi Srinivas, and V. Singh, Int. J. Fatigue 103, 426 (2017).

    Article  Google Scholar 

  13. V. Pandey, J.K. Singh, K. Chattopadhyay, N.C. Santhi Srinivas, and V. Singh, J. Alloy. Compd. 723, 826 (2017).

    Article  Google Scholar 

  14. S. Amini, S.A. Kariman, and R. Teimouri, Int. J. Adv. Manuf. Technol. 91, 1091 (2017).

    Article  Google Scholar 

  15. J. Park, I. Yeo, I. Jang, and S. Jeong, J. Mater. Process. Tech. 266, 283 (2019).

    Article  Google Scholar 

  16. L.X. Lu, J. Sun, L. Li, and Q.C. Xiong, Int. J. Adv. Manuf. Technol. 87, 2533 (2016).

    Article  Google Scholar 

  17. P. Dong, Z.P. Liu, X. Zhai, Z.F. Yan, W.X. Wang, and P.K. Liaw, Int. J. Fatigue 124, 15 (2019).

    Article  Google Scholar 

  18. X.C. Xu, D.X. Liu, X.H. Zhang, C.S. Liu, D. Liu, and W.C. Zhang, Int. J. Fatigue 125, 237 (2019).

    Article  Google Scholar 

  19. X.C. Xu, D.X. Liu, X.H. Zhang, C.S. Liu, and D. Liu, J. Mater. Sci. Technol. 40, 88 (2020).

    Article  Google Scholar 

  20. G.Y. Zheng, X. Luo, Y.Q. Yang, Z.D. Kou, B. Huang, Y.S. Zhang, and W. Zhang, Res. Phys. 13, 102318 (2019).

    Google Scholar 

  21. W.T. Huo, J.J. Hu, H.H. Cao, Y. Du, W. Zhang, and Y.S. Zhang, J. Alloy. Compd. 781, 680 (2019).

    Article  Google Scholar 

  22. G.M. Xu, C.M. Wang, Q.L. Li, X.H. Zhang, Z.Y. Zhu, T.X. Liang, and B. Yang, Mater. Manuf. Process. 35, 250 (2020).

    Article  Google Scholar 

  23. C.M. Wang, G.M. Xu, L.M. Zeng, Z.H. Tang, X.H. Zhang, and T.X. Liang, Metall. Mater. Trans. A 51, 1967 (2020).

    Article  Google Scholar 

  24. G.L. Song, A. Atrens, D. Stjohn, in Magnesium Technology 2001, ed. by J.N. Hryn (2001), pp. 255–262

  25. Y. Zhang, S. Jin, P.W. Trimby, X. Liao, M.Y. Murashkin, R.Z. Valiev, J. Liu, J.M. Cairney, S.P. Ringer, and G. Sha, Acta Mater. 162, 19 (2019).

    Article  Google Scholar 

  26. S.S. Wang, J.T. Jiang, G.H. Fan, A.M. Panindre, G.S. Frankel, and L. Zhen, Acta Mater. 131, 233 (2017).

    Article  Google Scholar 

  27. H. Zhao, F. De Geuser, A.K. da Silva, A. Szczepaniak, B. Gault, D. Ponge, and D. Raabe, Acta Mater. 156, 318 (2018).

    Article  Google Scholar 

  28. L. Kubin, and A. Mortensen, Scr. Mater. 48, 119 (2003).

    Article  Google Scholar 

  29. C.H. Hsu, and F. Mansfeld, Corrosion 57, 747 (2001).

    Article  Google Scholar 

  30. B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, and M. Musianid, J. Electrochem. Soc. 157, C452 (2001).

    Article  Google Scholar 

  31. B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, and M. Musianid, J. Electrochem. Soc. 157, C458 (2010).

    Article  Google Scholar 

  32. S.N. Wang, Y.H. Gu, Y.L. Geng, J. Liang, J. Zhao, and J. Kang, J. Alloy. Compd. 826, 153976 (2020).

    Article  Google Scholar 

  33. A. Nylund, and I. Olefjord, Surf. Interface Anal. 21, 283 (1994).

    Article  Google Scholar 

  34. G. Wu, K. Dash, M.L. Galano, and K.A.Q. Oreilly, Corros. Sci. 157, 41 (2019).

    Article  Google Scholar 

  35. E. Diler, B. Lescop, S. Rioual, J. Nguyen Vien, D. Thierry, and B. Rouvellou, Corros. Sci. 79, 83 (2014).

    Article  Google Scholar 

  36. Z.J. Cao, G. Kong, C.S. Che, and Y.Q. Wang, Appl. Surf. Sci. 426, 67 (2017).

    Article  Google Scholar 

  37. J. Yang, C.D. Yim, and B.S. You, Mater. Corros. 67, 531 (2016).

    Article  Google Scholar 

  38. W.Q. Xu, N. Birbilis, G. Sha, Y. Wang, J.E. Daniels, and Y. Xiao, Nat. Mater. 14, 1229 (2015).

    Article  Google Scholar 

  39. J. Ryl, J. Wysocka, M. Jarzynka, A. Zielinski, J. Orlikowski, and K. Darowicki, Corros. Sci. 87, 150 (2014).

    Article  Google Scholar 

  40. S.P. Knight, K. Pohl, N.J.H. Holroyd, N. Birbilis, P.A. Rometsch, B.C. Muddle, R. Goswami, and S.P. Lynch, Corros. Sci. 98, 50 (2015).

    Article  Google Scholar 

  41. V.V. Ramalingam, and P. Ramasamy, Trans. Indian Inst. Met. 70, 2575 (2017).

    Article  Google Scholar 

  42. L.T. Yin, W.C. Li, Y.C. Wang, Y. Jin, J.S. Pan, and C. Leygraf, Electrochim. Acta 324, 134847 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China [No. 51871114], and the Natural Science Foundation of Jiangxi Province [No. 20192ACB20003].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunming Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, L., Xu, G., Wang, C. et al. Microstructure and Corrosion Behavior of Ultrasonic Surface Treated 7B85 Al Alloy. JOM 75, 86–96 (2023). https://doi.org/10.1007/s11837-022-05449-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05449-z

Navigation