Skip to main content
Log in

Ultrasonic Vibration-Assisted Surface Plastic Deformation of a CrCoNi Medium Entropy Alloy: Microstructure Evolution and Mechanical Response

  • Recent Advances in Multicomponent Alloys and Ceramics
  • Published:
JOM Aims and scope Submit manuscript

Abstract

As a new form of plastic deformation, ultrasonic vibration-assisted deformation has recently attracted extensive attention, while its microstructure evolution and mechanical response remain unclear. In this paper, a gradient grain/twin structure of CrCoNi medium entropy alloy (MEA) was constructed by performing ultrasonic vibration surface friction treatment (UV-SFT) to improve its mechanical properties. Before and after plastic deformation, such a constructed microstructure was characterized by using an optical microscope, scanning electron microscope, electron backscattered diffraction, and transmission electron microscope, and thus both the microhardness and uniaxial tensile testing were performed. After the CrCoNi MEA has been experimentally treated with a UV-SFT process, not only does it exhibit a gradient grain/twin structure but the gradient deformation layer can also be divided into three parts: (1) the main features closest to the outer layer are nanocrystals and twins bent by deformation; (2) the severely plastic deformed layer leads to elongated lamellar grains and crossed multi-twinning systems; and (3) the transition layer mainly presents parallel twins and dislocation movements. Ultrasonic vibration surface plastic deformation significantly improves the yield strength and ultimate tensile strength of the CrCoNi MEA without loss of its plasticity, and shows excellent mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Ma, F.P. Yuan, M.X. Yang, P. Jiang, E. Ma, and X.L. Wu, Acta Mater. 148, 407 (2018)

    Article  Google Scholar 

  2. G.A. He, Y.F. Zhao, B. Gan, X.F. Sheng, Y. Liu, and L.M. Tan, J. Alloy. Compd. 815, 152382 (2020)

    Article  Google Scholar 

  3. S.Q. Xia, M.C. Gao, and Y. Zhang, Mater. Chem. Phys. 210, 213 (2018)

    Article  Google Scholar 

  4. D.Y. Li, and Y. Zhang, Intermetallics 70, 24 (2016)

    Article  Google Scholar 

  5. J.Y. He, S.K. Makineni, W.J. Lu, Y.Y. Shang, Z.P. Lu, Z.M. Li, and B. Gault, Scripta Mater. 175, 1 (2020)

    Article  Google Scholar 

  6. W.J. Lu, X. Luo, Y.Q. Yang, J.T. Zhang, and B. Huang, Mater. Chem. Phys. 238, 121841 (2019)

    Article  Google Scholar 

  7. Y.Y. Shang, Y. Wu, J.Y. He, X.Y. Zhu, S.F. Liu, H.L. Huang, K. An, Y. Chen, S.H. Jiang, H. Wang, X.J. Liu, and Z.P. Lu, Intermetallics 106, 77 (2019)

    Article  Google Scholar 

  8. J.P. Liu, J.X. Chen, T.W. Liu, C. Li, Y. Chen, and L.H. Dai, Scripta Mater. 181, 19 (2020)

    Article  Google Scholar 

  9. Y.L. Zhao, T. Yang, Y. Tong, J. Wang, J.H. Luan, Z.B. Jiao, D. Chen, Y. Yang, A. Hu, C.T. Liu, and J.J. Kai, Acta Mater. 138, 72 (2017)

    Article  Google Scholar 

  10. X.L. Wu, M.X. Yang, P. Jiang, C. Wang, L.L. Zhou, F.P. Yuan, and E. Ma, Scripta Mater. 178, 452 (2020)

    Article  Google Scholar 

  11. M.X. Yang, L.L. Zhou, C. Wang, P. Jiang, F.P. Yuan, E. Ma, and X.L. Wu, Scripta Mater. 172, 66 (2019)

    Article  Google Scholar 

  12. S. Pan, C.C. Zhao, P.B. Wei, and F.Z. Ren, Wear 440–441, 203108 (2019)

    Article  Google Scholar 

  13. G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, and E.P. George, Acta Mater. 128, 292 (2017)

    Article  Google Scholar 

  14. W. Woo, M. Naeem, J.S. Jeong, C.M. Lee, S. Harjo, T. Kawasaki, H.Y. He, and X.L. Wang, Mater. Sci. Eng., A 781, 139224 (2020)

    Article  Google Scholar 

  15. Y.H. Jo, D.G. Kim, M.C. Jo, K.Y. Doh, S.S. Sohn, D. Lee, H.S. Kim, B.J. Lee, and S. Lee, J. Alloy. Compd. 785, 1056 (2019)

    Article  Google Scholar 

  16. H.W. Deng, M.M. Wang, Z.M. Xie, T. Zhang, X.P. Wang, Q.F. Fang, and Y. Xiong, Mater. Sci. Eng., A 804, 140516 (2020)

    Article  Google Scholar 

  17. N. An, Y.N. Sun, Y.D. Wu, J.J. Tian, Z.R. Li, Q. Li, J.Y. Chen, and X.D. Hui, Mater. Sci. Eng., A 798, 140213 (2020)

    Article  Google Scholar 

  18. L. Wang, M.Y. Li, H. Tan, Y.M. Feng, and Y.T. Xi, J. Mater. Eng. Perform. 29(6), 3812 (2020)

    Article  Google Scholar 

  19. F. Sansoz, K. Lu, T. Zhu, and A. Misra, MRS Bull. 41, 292 (2016)

    Article  Google Scholar 

  20. N. Ao, D.X. Liu, X.H. Zhang, and C.S. Liu, Appl. Surf. Sci. 489, 595 (2019)

    Article  Google Scholar 

  21. N. Ao, D.X. Liu, X.H. Zhang, K.F. Fan, H.L. Shi, Z. Liu, and C.S. Liu, J. Alloy. Compd. 811, 152017 (2019)

    Article  Google Scholar 

  22. N. Ao, D.X. Liu, X.C. Xu, X.H. Zhang, and D. Liu, Mater. Sci. Eng., A 742, 820 (2019)

    Article  Google Scholar 

  23. C. Suh, G. Song, M. Suh, and Y. Pyoun, Mater. Sci. Eng., A 443, 101 (2007)

    Article  Google Scholar 

  24. S.H. Luo, Y.H. Li, L.C. Zhou, X.F. Nie, G.Y. He, Y.Q. Li, and W.F. He, Mater. Des. 104, 330 (2016)

    Google Scholar 

  25. C. Ma, M.T. Andani, H. Qin, N.S. Moghaddam, H. Ibrahim, A. Jahadakbar, A. Amerinatanzi, Z. Ren, H. Zhang, G.L. Doll, Y. Dong, M. Elahinia, and C. Ye, J. Mater. Process. Technol. 249, 433 (2017)

    Article  Google Scholar 

  26. C.I. Chang, C.J. Lee, and J.C. Huang, Scripta Mater. 51, 509 (2004)

    Article  Google Scholar 

  27. A.H. Ammouri, G. Kridli, G. Ayoub, and R.F. Hamade, J. Mater. Process. Technol. 222, 301 (2015)

    Article  Google Scholar 

  28. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Mater. Sci. Eng., A 238, 219 (1997)

    Article  Google Scholar 

  29. L. Wang, J.A. Benito, J. Calvo, and J.M. Cabrera, J. Mater. Eng. Perform. 26(2), 554 (2017)

    Article  Google Scholar 

  30. L. Wang, J.A. Benito, J. Calvo, and J.M. Cabrera, J. Mater. Sci. 52(11), 6291 (2017)

    Article  Google Scholar 

  31. C. Ye, A. Telang, A.S. Gill, S. Suslov, Y. Idell, K. Zweiacker, J.M.K. Wiezorek, Z. Zhou, D. Qian, S.R. Mannava, and V.K. Vasudevan, Mater. Sci. Eng., A 613, 274 (2014)

    Article  Google Scholar 

  32. X.L. Wu, P. Jiang, L. Chen, F.P. Yuan, and Y.T. Zhu, Proc. Natl. Acad. Sci. U.S.A. 111, 7197 (2014)

    Article  Google Scholar 

  33. E. Cerri, P.D. Marco, and P. Leo, J. Mater. Process. Technol. 209, 1550 (2009)

    Article  Google Scholar 

  34. F. Ahmadi, M. Farzin, and M. Mandegari, Ultrasonics 63, 111 (2015)

    Article  Google Scholar 

  35. R.B. Lindsay, Mechanical radiation (McGraw-Hill, New York, 1960)

    Google Scholar 

Download references

Acknowledgements

The present work has been financially supported by the National Natural Science Foundation of China Project (Grant No.: 12102340), the Young Scientific Research and Innovation Team of the Xi'an Shiyou University (Grant No.: 2019QNKYCXTD14), the State Key Laboratory of Metastable Materials Science and Technology (Grant No.: 202111), the State Key Lab of Advanced Metals and Materials (Grant No.: 2021-Z06), the Opening project fund of Materials Service Safety Assessment Facilities (Grant No.: MSAF-2021-101), and the Postgraduate Innovation and Practical Ability Training Program of the Xi'an Shiyou University (Grant No.: YCS20212125). The authors also acknowledge a Discovery Grant and a Collaborative Research and Development (CRD) Grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada to D. Yang.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Wang or Daoyong Yang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Hao, X., Su, Q. et al. Ultrasonic Vibration-Assisted Surface Plastic Deformation of a CrCoNi Medium Entropy Alloy: Microstructure Evolution and Mechanical Response. JOM 74, 4202–4214 (2022). https://doi.org/10.1007/s11837-022-05448-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05448-0

Navigation