Skip to main content
Log in

Temperature Shift for Nanocluster Evolution in Ion-Irradiated Ferritic-Martensitic Alloys

  • Properties and Evolution of Defects and Interfaces
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Ferritic-martensitic (F/M) alloys are leading candidate materials for advanced reactors, but are known to experience nucleation and growth of solute nanoclusters, causing irradiation-induced embrittlement. In this study, two simulation models are applied to describe Si-Mn-Ni-rich nanocluster irradiation evolution, with each model predicting a negative temperature shift for Fe2+ ions to emulate nanocluster morphologies resulting from neutron irradiation to 3 dpa at 500°C. Using this prescribed shift, Fe2+ ion irradiation was conducted on three F/M alloys (T91, HCM12A, and HT9) to 3 dpa at 370°C. Atom probe tomography characterization shows that the morphologies for Si-Mn-Ni-rich and Cu-rich nanoclusters following Fe2+ irradiation at 370°C are comparable to the nanocluster morphologies after neutron irradiation at 500°C in all three F/M alloys, confirming the predicted shift. More precise temperature shifts for solute nanocluster irradiation evolution are likely dependent on the clustering species in question and their respective diffusion rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Henry and S.A. Maloy, Structural Materials for Generation IV Nuclear Reactors, P. Yvon (Ed.), Woodhead Publishing, 2017: pp. 329–355.

  2. R.L. Klueh and D.R. Harries, High-Chromium Ferritic and Martensitic Steels for Nuclear Applications, ASTM, 2001.

  3. T.R. Allen, D. Kaoumi, J.P. Wharry, Z. Jiao, C. Topbasi, A. Kohnert, L. Barnard, A. Certain, K.G. Field, G.S. Was, D.L. Morgan, A.T. Motta, B.D. Wirth, and Y. Yang, J. Mater. Res. 30, 1246 (2015).

    Article  Google Scholar 

  4. B.H. Sencer, J.R. Kennedy, J.I. Cole, S.A. Maloy, and F.A. Garner, J. Nucl. Mater. 393, 235 (2009).

    Article  Google Scholar 

  5. X. Jia and Y. Dai, J. Nucl. Mater. 318, 207 (2003).

    Article  Google Scholar 

  6. P. Ampornrat and G.S. Was, J. Nucl. Mater. 371, 1 (2007).

    Article  Google Scholar 

  7. J.J. Kai and R.L. Klueh, J. Nucl. Mater. 230, 116 (1996).

    Article  Google Scholar 

  8. J. van den Bosch, O. Anderoglu, R. Dickerson, M. Hartl, P. Dickerson, J.A. Aguiar, P. Hosemann, M.B. Toloczko, and S.A. Maloy, J. Nucl. Mater. 440, 91 (2013).

    Article  Google Scholar 

  9. O. Anderoglu, J. van den Bosch, P. Hosemann, E. Stergar, B.H. Sencer, D. Bhattacharyya, R. Dickerson, M. Hartl, and S.A. Maloy, J. Nucl. Mater. 430, 194 (2012).

    Article  Google Scholar 

  10. P. Dubuisson, D. Gilbon, and J.L. Seran, J. Nucl. Mater. 205, 178 (1993).

    Article  Google Scholar 

  11. Z. Jiao, V. Shankar, and G.S. Was, J. Nucl. Mater. 419, 52 (2011).

    Article  Google Scholar 

  12. G. Gupta, Z. Jiao, A.N. Ham, J.T. Busby, and G.S. Was, J. Nucl. Mater. 351, 162 (2006).

    Article  Google Scholar 

  13. E.R. Reese, M. Bachhav, P. Wells, T. Yamamoto, G. Robert Odette, E.A. Marquis, J. Nucl. Mater., 500, 192 (2018)

  14. J.E. Zelenty, Mater. Sci. Technol. 31, 981 (2015).

    Article  Google Scholar 

  15. G.R. Odette and G.E. Lucas, J. Mater. 0107, 18 (2001).

    Google Scholar 

  16. K. Fukuya, J. Nucl. Sci. Technol. 50, 213 (2013).

    Article  Google Scholar 

  17. C. Zheng, M.A. Auger, M.P. Moody, and D. Kaoumi, J. Nucl. Mater. 491, 162 (2017).

    Article  Google Scholar 

  18. C. Zheng, E.R. Reese, K.G. Field, E. Marquis, S.A. Maloy, and D. Kaoumi, J. Nucl. Mater. 523, 421 (2019).

    Article  Google Scholar 

  19. C. Zheng, E.R. Reese, K.G. Field, T. Liu, E.A. Marquis, S.A. Maloy, and D. Kaoumi, J. Nucl. Mater. 528, 151845 (2020).

    Article  Google Scholar 

  20. C. Pareige, V. Kuksenko, and P. Pareige, J. Nucl. Mater. 456, 471 (2015).

    Article  Google Scholar 

  21. E. Getto, K. Sun, A.M. Monterrosa, Z. Jiao, M.J. Hackett, and G.S. Was, J. Nucl. Mater. 480, 159 (2016).

    Article  Google Scholar 

  22. B.H. Sencer, J.R. Kennedy, J.I. Cole, S.A. Maloy, and F.A. Garner, J. Nucl. Mater. 414, 237 (2011).

    Article  Google Scholar 

  23. Z. Jiao, S. Taller, K. Field, G. Yeli, M.P. Moody, and G.S. Was, J. Nucl. Mater. 504, 122 (2018).

    Article  Google Scholar 

  24. A.M. Monterrosa, Z. Jiao, and G.S. Was, J. Nucl. Mater. 509, 707 (2018).

    Article  Google Scholar 

  25. Z. Jiao, J. Michalicka, and G.S. Was, J. Nucl. Mater. 501, 312 (2018).

    Article  Google Scholar 

  26. S. Taller, Z. Jiao, K. Field, and G.S. Was, J. Nucl. Mater. 527, 151831 (2019).

    Article  Google Scholar 

  27. G.S. Was, Z. Jiao, E. Getto, K. Sun, A.M. Monterrosa, S.A. Maloy, O. Anderoglu, B.H. Sencer, and M. Hackett, Scripta Mater. 88, 33 (2014).

    Article  Google Scholar 

  28. G.S. Was, J.T. Busby, T. Allen, E.A. Kenik, A. Jenssen, S.M. Bruemmer, J. Gan, A.D. Edwards, P.M. Scott, and P.L. Andresen, J. Nucl. Mater. 300, 198 (2002).

    Article  Google Scholar 

  29. L.K. Mansur, J. Nucl. Mater. 78, 156 (1978).

    Article  Google Scholar 

  30. L.K. Mansur, J. Nucl. Mater. 206, 306 (1993).

    Article  Google Scholar 

  31. M.J. Swenson and J.P. Wharry, J. Nucl. Mater. 496, 24 (2017).

    Article  Google Scholar 

  32. S.B. Adisa, R. Blair, and M.J. Swenson, Materialia 12, 100700 (2020).

    Article  Google Scholar 

  33. S.J. Zinkle and L.L. Snead, Scripta Mater. 143, 154 (2018).

    Article  Google Scholar 

  34. H.J. MacLean, K. Sridharan, T.A. Hyde, Irradiation Test Plan for the ATR National Scientific User Facility - University of Wisconsin Pilot Project, (2008) 1–18.

  35. H. Ke, P. Wells, P.D. Edmondson, N. Almirall, L. Barnard, G.R. Odette, and D. Morgan, Acta Mater. 138, 10 (2017).

    Article  Google Scholar 

  36. J. Ke, H. Ke, G.R. Odette, and D. Morgan, J. Nucl. Mater. 498, 83 (2018).

    Article  Google Scholar 

  37. R.S. Nelson, J.A. Hudson, and D.J. Mazey, J. Nucl. Mater. 44, 318 (1972).

    Article  Google Scholar 

  38. M.J. Swenson and J.P. Wharry, J. Mater. 72, 4017 (2020).

    Google Scholar 

  39. S.B. Adisa, J. Hu, and M.J. Swenson, Materialia 16, 101040 (2021).

    Article  Google Scholar 

  40. S. Lozano-perez, Understanding and mitigating ageing in nuclear power plants: Materials and operational aspects of plant life management (PLIM), P. Tipping (Ed.) (2010) 389–416.

  41. K. Thompson, D. Lawrence, D.J. Larson, J.D. Olson, T.F. Kelly, and B. Gorman, Ultramicroscopy 107, 131 (2007).

    Article  Google Scholar 

  42. J.M. Hyde, E.A. Marquis, K.B. Wilford, and T.J. Williams, Ultramicroscopy 111, 440 (2011).

    Article  Google Scholar 

  43. R.P. Kolli and D.N. Seidman, Microsc. Microanal. 13, 272 (2007).

    Article  Google Scholar 

  44. C.A. Williams, D. Haley, E.A. Marquis, G.D.W. Smith, and M.P. Moody, Ultramicroscopy 132, 271 (2013).

    Article  Google Scholar 

  45. M.K. Miller and R. Forbes, Atom probe tomography: the local electrode atom probe (Springer, New York, 2014).

    Google Scholar 

  46. C.A. Williams, E.A. Marquis, and A. Cerezo, J. Nucl. Mater. 400, 37 (2010).

    Article  Google Scholar 

  47. G.R. Odette, N. Almirall, P.B. Wells, and T. Yamamoto, Acta Mater. 212, 116922 (2021).

    Article  Google Scholar 

  48. S. Shu, P. Wells, N. Almirall, G. Odette, and D. Morgan, Acta Mater. 157, 298–306 (2018).

    Article  Google Scholar 

  49. M.J. Swenson and J.P. Wharry, J. Nucl. Mater. 502, 30–41 (2018).

    Article  Google Scholar 

  50. M. Johnson, M. Harned, S.B. Adisa, M. Moradi, M. Maughan, and M.J. Swenson, Materialia 20, 101228 (2021).

    Article  Google Scholar 

  51. M. Topping, A. Harte, T. Ungár, C.P. Race, S. Dumbill, P. Frankel, and M. Preuss, J. Nucl. Mater. 514, 358 (2019).

    Article  Google Scholar 

  52. G. Martin, Phys. Rev. B 30, 1424 (1984).

    Article  Google Scholar 

  53. F. Soisson, E. Meslin, and O. Tissot, J. Nucl. Mater. 508, 583 (2018).

    Article  Google Scholar 

  54. J.H. Ke, E.R. Reese, E.A. Marquis, G.R. Odette, and D. Morgan, Acta Mater. 164, 586 (2019).

    Article  Google Scholar 

  55. J.C. Haley, S. de Moraes Shubeita, P. Wady, A.J. London, G.R. Odette, S. Lozano-Perez, S.G. Roberts, J. Nucl. Mater. 533, 152130 (2020)

  56. M. Bachhav, G. Robert Odette, E.A. Marquis, Scripta Materialia, 74, 48 (2014)

  57. Z. Jiao and G.S. Was, J. Nucl. Mater. 425, 105 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge and thank J. Burns, M. Dubey, and Y. Wu in the Microscopy and Characterization Suite at CAES for assistance with microscopy. The authors also acknowledge G. Was, O. Toader, and the staff in the Michigan Ion Beam Laboratory for execution of the Fe2+ ion irradiation. This research was sponsored in part by the US Nuclear Regulatory Commission Grant NRC-HG-84-15-G-0025, and is supported by the U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07-051D14517 as part of the Nuclear Science User Facilities RTE experiments 13-419, 16-625, 16-720, 18-1210, 18-1400, and 19-1765.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Swenson.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 269 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adisa, S.B., Swenson, M.J. Temperature Shift for Nanocluster Evolution in Ion-Irradiated Ferritic-Martensitic Alloys. JOM 74, 4069–4080 (2022). https://doi.org/10.1007/s11837-022-05443-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05443-5

Navigation