Skip to main content
Log in

Microstructure and Mechanical Properties of Continuous Tungsten Fiber-Reinforced Tungsten-Zirconium Carbide-Copper Composites by Reactive Infiltration

  • Refractory Materials for Corrosive or High Temperature Environments
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Continuous tungsten fiber-reinforced tungsten-zirconium carbide-copper (Wf/W-ZrC-Cu) composites have been prepared by infiltrating Zr14Cu51 and 40 wt.% Zr-Cu molten alloys into porous Wf/W + WC preforms at 1200°C. The Zr-Cu infiltrants reducted most WC into W and ZrC. Residual Cu was advantageous to the extrinsic energy dissipation mechanisms of undamaged Wf by friction/interface de-bonding between Wf and W-ZrC matrix. Flexural strength and fracture toughness of the composites reached 571 MPa and 7.85 MPa m1/2, respectively. The composites with ~ 4 vol.% continuous Wf presented a pseudo-plastic-type fracture behavior and exhibited superior fracture work (~ 103 J m−2). The hybrid strengthening and toughening effects of Wf and in situ-formed submicron-sized ZrC particles have made the Wf/W-ZrC-Cu composites better combination properties than reactive melt-infiltrated W-ZrC-Cu composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.M. Song, Y.J. Wang, and Y. Zhou, J. Mater. Sci. 36, 4625. (2001).

    Article  Google Scholar 

  2. M. Caccia, M. Tabandeh-Khorshid, G. Itskos, A.R. Strayer, A.S. Caldwell, S. Pidaparti, S. Singnisai, A.D. Rohskopf, A.M. Schroeder, D. Jarrahbashi, T. Kang, S. Sahoo, N.R. Kadasala, A. Marquez-Rossy, M.H. Anderson, E. Lara-Curzio, D. Ranjan, A. Henry, and K.H. Sandhage, Nature 562, 406. (2018).

    Article  Google Scholar 

  3. S. Wang, X. Fan, X. Yang, Q. Zhang, K. Wu, and D. Li, Ceram. Int. 44, 18650. (2018).

    Article  Google Scholar 

  4. C. Ren, Z.Z. Fang, M. Koopman, B. Butler, J. Paramore, and S. Middlemas, Int. J. Refract. Met. Hard Mater. 75, 170. (2018).

    Article  Google Scholar 

  5. P.R.F. Bunshah, AIP Conf. Proc. 149, 130. (1986).

    Article  Google Scholar 

  6. B. Mainzer, C. Lin, M. Frieß, R. Riedel, J. Riesch, A. Feichtmayer, M. Fuhr, J. Almanstötter, and D. Koch, J. Eur. Ceram. Soc. 41, 3030. (2021).

    Article  Google Scholar 

  7. Y. Wang, Y. Zhou, G. Song, Z. Huang, and T. Lei, In chinese materials research society (Springer, Beijing, 2000), p 4.

    Google Scholar 

  8. Y. Wang, Y. Zhou, G. Song, D. Lv, and T. Lei, Trans. Nonferrous Met. Soc. China 11, 472. (2001).

    Google Scholar 

  9. Y. Jiang, J. Hou, P. Huang, J. Li, E.H. Wu, Z. Xu, Q.S. Liu, Z. Xie, and Q. Fang, Int. J. Refract. Met. Hard Mater. 93, 105360. (2020).

    Article  Google Scholar 

  10. A.G. Evans, J. Am. Ceram. Soc. 73, 187. (1990).

    Article  Google Scholar 

  11. L. Raumann, J.W. Coenen, J. Riesch, Y. Mao, D. Schwalenberg, T. Wegener, H. Gietl, T. Höschen, Ch. Linsmeier, and O. Guillon, Nucl. Mater. Energy 28, 101048. (2021).

    Article  Google Scholar 

  12. L.H. Zhang, Y. Jiang, Q.F. Fang, T. Zhang, X.P. Wang, and C.S. Liu, Mater. Sci. Eng. A 659, 29. (2016).

    Article  Google Scholar 

  13. S. Liang, L. Chen, Z. Yuan, Y. Li, J. Zou, P. Xiao, and L. Zhuo, Mater. Charact. 110, 33. (2015).

    Article  Google Scholar 

  14. Z.K. Li, H.M. Fu, P.F. Sha, Z.W. Zhu, A.M. Wang, H. Li, H.W. Zhang, H.F. Zhang, and Z.Q. Hu, Sci. Rep. 5, 8967. (2015).

    Article  Google Scholar 

  15. D.W. Lipke, Y. Zhang, Y. Liu, B.C. Church, and K.H. Sandhage, J. Eur. Ceram. Soc. 30, 2265. (2010).

    Article  Google Scholar 

  16. D. Wang, L. Chen, Y.-J. Wang, S.-J. Huo, J.-H. Ouyang, and Y. Zhou, Int. J. Refract. Met. Hard Mater. 67, 125. (2017).

    Article  Google Scholar 

  17. Y. Zhu, S. Wang, W. Li, S. Zhang, and Z. Chen, Scripta Mater. 67, 822. (2012).

    Article  Google Scholar 

  18. D. Wang, Y. Wang, J. Rao, J. Ouyang, Y. Zhou, and G. Song, Mater. Sci. Eng. A 568, 25. (2013).

    Article  Google Scholar 

  19. R.K. Mudanyi, C.L. Cramer, A.M. Elliott, K.A. Unocic, Q. Guo, and D. Kumar, Int. J. Refract. Met. Hard Mater. 94, 105411. (2021).

    Article  Google Scholar 

  20. S. Zhang Fabrication and properties of zirconium-based ultra high temperature ceramic composites by reactive melt infiltration at relative low temperature, doctoral dissertation, national university of defense technology, 2012.

  21. M.B. Dickerson, R.L. Snyder, and K.H. Sandhage, J. Am. Ceram. Soc. 85, 730. (2002).

    Article  Google Scholar 

  22. D. Wang, H. Chen, Y. Wang, and B. Wei, J. Alloy. Compd. 843, 155919. (2020).

    Article  Google Scholar 

  23. Y.-W. Zhao, Y.-J. Wang, Y. Zhou, H.-X. Peng, and G.-M. Song, J. Am. Ceram. Soc. 94, 3178. (2011).

    Article  Google Scholar 

  24. D. Wang, Y.-J. Wang, S.-J. Huo, Y.-W. Zhao, J.-H. Ouyang, G.-M. Song, and Y. Zhou, J. Mater. Eng. Perform. 27, 1866. (2018).

    Article  Google Scholar 

  25. D. Wu, G. Huangfu, D. Wang, B. Wei, Y. Wang, and Y. Zhou, Ceram. Int. 44, 246. (2018).

    Article  Google Scholar 

  26. D. Wang, and Y. Wang, Metall. Mater. Trans. B 51, 1603. (2020).

    Article  Google Scholar 

  27. Y.-W. Zhao, Y.-J. Wang, X.-Y. Jin, P. Jia, L. Chen, Y. Zhou, G.-M. Song, J.-P. Li, and Z.-H. Feng, Mater. Chem. Phys. 153, 17. (2015).

    Article  Google Scholar 

  28. A.I. Zaitsev, N.E. Zaitseva, Y.P. Alekseeva, E.M. Kurilchenko, and S.F. Dunaev, Inorg. Mater. 39, 816. (2003).

    Article  Google Scholar 

  29. D. Wang, Y. Wang, W. Deng, G. Song, and Y. Zhou, Mater. Chem. Phys. 212, 51. (2018).

    Article  Google Scholar 

  30. J.E. Lazaroff, P.D. Ownby, and D.A. Weirauch Jr., J. Am. Ceram. Soc. 78, 539. (1995).

    Article  Google Scholar 

  31. A.K. Niessen, F.R. de Boer, R. Boom, P.F. de Châtel, W.C.M. Mattens, and A.R. Miedema, Calphad 7, 51. (1983).

    Article  Google Scholar 

  32. Z. Wu, P.C. Kang, G.H. Wu, Q. Guo, G.Q. Chen, and L.T. Jiang, Mater. Sci. Eng. A 536, 45. (2012).

    Article  Google Scholar 

  33. Y. Mao, J.W. Coenen, J. Riesch, S. Sistla, J. Almanstötter, B. Jasper, A. Terra, T. Höschen, H. Gietl, Ch. Linsmeier, and C. Broeckmann, Compos. A Appl. Sci. Manuf. 107, 342. (2018).

    Article  Google Scholar 

  34. N. Guo, P. Shen, R.-F. Guo, and Q.-C. Jiang, Mater. Sci. Eng. A 748, 286. (2019).

    Article  Google Scholar 

  35. S. Leber, J. Tavernelli, D.D. White, and R.F. Hehemann, J. Less Common Met. 48, 119. (1976).

    Article  Google Scholar 

  36. L.L. Seigle, and C.D. Dickinson, In refractory metals and alloys (Interscience, New York, 1963), p 65.

    Google Scholar 

  37. J. Du, T. Höschen, M. Rasinski, and J.-H. You, Mater. Sci. Eng. A 527, 1623. (2010).

    Article  Google Scholar 

  38. G. He, K. Xu, S. Guo, X. Qian, Z. Yang, G. Liu, and J. Li, J. Nucl. Mater. 455, 225. (2014).

    Article  Google Scholar 

  39. Y. Mao, J. Coenen, S. Sistla, C. Liu, A. Terra, X. Tan, J. Riesch, T. Hoeschen, Y. Wu, C. Broeckmann, and C. Linsmeier, Mater. Sci. Eng. A 817, 141361. (2021).

    Article  Google Scholar 

  40. J. Riesch, J.-Y. Buffiere, T. Höschen, M. di Michiel, M. Scheel, Ch. Linsmeier, and J.-H. You, Acta Mater. 61, 7060. (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52002003, 52002098 and U1860102), Natural Science Foundation of Anhui Province, China (No. 2008085QE196) and Open fund of Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Anhui University of Technology), Ministry of Education (No. GFST2020KF09).

Funding

National Natural Science Foundation of China, 52002003, Dong Wang, 52002098, Boxin Wei, U1860102, Songlin Ran, Natural Science Foundation of Anhui Province, 2008085QE196, Dong Wang, Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Anhui University of Technology), Ministry of Education, GFST2020KF09, Dong Wang.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Wang or Songlin Ran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Xu, K., Wei, B. et al. Microstructure and Mechanical Properties of Continuous Tungsten Fiber-Reinforced Tungsten-Zirconium Carbide-Copper Composites by Reactive Infiltration. JOM 74, 4307–4316 (2022). https://doi.org/10.1007/s11837-022-05433-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05433-7

Navigation