Skip to main content
Log in

Microstructural Evolution and Bio-Corrosion Behavior of a CP-Ti Processed by Multi-Pass of Severe Plastic Deformation

  • Interactions between Biomaterials and Biological Tissues and Cells
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The microstructure evaluation and phase transformation of multi-pass friction stir-processed (FSP) commercially pure titanium were investigated using optical microscopy, scanning electron microscopy equipped with a backscatter detector, and electron backscatter diffractometer. The microstructure characterization shows that the grain refinement mechanism changed with the increasing number of passes. The equiaxed α grains in the untreated sample changed to lath-shaped grains surrounded by serrated grain boundaries, and produced Widmanstätten morphology during the cooling cycle of FSP. The higher micro-hardness values and bio-corrosion resistances of the FSP-treated samples are due to their lower grain size compared to the untreated samples. Furthermore, the presence of lath-shaped Widmanstätten morphology shows a higher micro-hardness value and lower bio-corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Matthew and J. Donachie, Titanium a technical guide (ASM International Technical, Ohio, 2000).

    Google Scholar 

  2. R.S.M.C.B. Smith, Friction stir processing for enhanced low temperature formability (Elsevier Inc, Oxford, 2014).

    Google Scholar 

  3. R.S. Mishra, M.W. Mahoney, and R.S. Company, Friction stir welding and processing (ASM International Technical, Ohio, 2007).

    Google Scholar 

  4. Z.Y. Ma, Metall. Mater. Trans. A 39, 642. (2008).

    Article  Google Scholar 

  5. M. Ramulu, K. Gangwar, A. Cantrell, and P. Laxminarayana, Mater. Today Proc. 5, 1082. (2018).

    Article  Google Scholar 

  6. H. Fujii, Y. Sun, H. Kato, and K. Nakata, Mater. Sci. Eng. A 527, 3386. (2010).

    Article  Google Scholar 

  7. Y. Zhang, Y.S. Sato, H. Kokawa, S.H.C. Park, and S. Hirano, Mater. Sci. Eng. A 488, 25. (2008).

    Article  Google Scholar 

  8. K.E. Knipling and R.W. Fonda, Scr. Mater. 60, 1097. (2009).

    Article  Google Scholar 

  9. Y. Zhang, Y.S. Sato, H. Kokawa, S.H.C. Park, and S. Hirano, Sci. Technol. Weld. Join. 15, 500. (2010).

    Article  Google Scholar 

  10. A. Sha, S.F. Kashani-bozorg, and A.P. Gerlich, Mater. Sci. Eng. A 631, 75. (2015).

    Article  Google Scholar 

  11. L. Wang, L. Xie, Y. Lv, L. Zhang, L. Chen, Q. Meng, J. Qu, D. Zhang, and W. Lu, Acta Mater. 131, 499. (2017).

    Article  Google Scholar 

  12. A. Fattah-alhosseini, M. Vakili-azghandi, and M. Haghshenas, Int J Adv. Manuf. Technol. 90, 991. (2017).

    Article  Google Scholar 

  13. A. Fattah-alhosseini and F.R. Attarzadeh, Metall. Mater. Trans. A 48, 403. (2017).

    Article  Google Scholar 

  14. A. Fattah-alhosseini, M. Vakili-azghandi, and M. Sheikhi, J. Alloys Compd. 704, 499. (2017).

    Article  Google Scholar 

  15. M. Vakili-Azghandi, M. Roknian, J.A. Szpunar, and S.M. Mousavizade, J. Alloys Compd. 816, 152557. (2020).

    Article  Google Scholar 

  16. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena (Elsevier Ltd, Amsterdam, 2004).

    Google Scholar 

  17. W.-B. Lee, C.-Y. Lee, W.-S. Chang, Y.-M. Yeon, and S.-B. Jung, Mater. Lett. 59, 3315. (2005).

    Article  Google Scholar 

  18. H.S. Kim, S.J. Yoo, J.W. Ahn, D.H. Kim, and W.J. Kim, Mater. Sci. Eng. A 528, 8479. (2011).

    Article  Google Scholar 

  19. M.V. Diamanti, M.P. Pedeferri, and C.A. Schuh, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 39, 2143. (2008).

    Article  Google Scholar 

  20. G.S. Dyakonov, S. Mironov, I.P. Semenova, R.Z. Valiev, and S.L. Semiatin, Mater. Sci. Eng. A 701, 289. (2017).

    Article  Google Scholar 

  21. S. Waheed, Z. Zheng, D.S. Balint, F.P.E. Dunne, Z. Zheng, and D.S. Balint, Acta Mater. 453, 142. (2018).

    Google Scholar 

  22. S. Mironov, Y.S. Sato, and H. Kokawa, J. Mater. Sci. Technol. 34, 58. (2018).

    Article  Google Scholar 

  23. H. Beladi, Q. Chao, and G.S. Rohrer, ACTA Mater. 80, 478. (2014).

    Article  Google Scholar 

  24. S. Karna, M. Cheepu, D. Venkateswarulu, and V. Srikanth, in Recent Dev. Res. Prog. Frict. Stir Weld. Titan. Alloy. An Overv. (IOP Publishing Ltd, 2018), pp. 0–16

  25. S. Roy, S. Suwas, S. Tamirisakandala, R. Srinivasan, and D.B. Miracle, Mater. Sci. Eng. A 540, 152. (2012).

    Article  Google Scholar 

  26. A.L. Pilchak and J.C. Williams, Met. Metall. Trans. A. 42A, 10. (2011).

    Google Scholar 

  27. G.S. Dyakonov, E. Zemtsova, S. Mironov, I.P. Semenova, R.Z. Valiev, and S.L. Semiatin, Mater. Sci. Eng. A 648, 305. (2015).

    Article  Google Scholar 

  28. M. Shamanian, H. Mostaan, and M. Safari, Arch. Civ. Mech. Eng. 17, 574. (2017).

    Article  Google Scholar 

  29. L. Wang, L. Xie, Y. Lv, L.-C. Zhang, L. Chen, Q. Meng, Qu. Jiao, Di. Zhang, and Lu. Weijie, Acta Mater. 131, 499. (2017).

    Article  Google Scholar 

  30. M. Kato, Mater. Trans. 55, 19. (2014).

    Article  Google Scholar 

  31. E.K. Sevidova and A.A. Simonova, Surf. Eng. Appl. Electrochem. 47, 162. (2011).

    Article  Google Scholar 

  32. B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, and M. Musiani, J. Electrochem. Soc. 157, C452. (2010).

    Article  Google Scholar 

  33. L. Hamadou, L. Aïnouche, A. Kadri, S.A.A. Yahia, and N. Benbrahim, Electrochim. Acta 113, 99. (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Vakili-Azghandi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vakili-Azghandi, M., Famil Hatami, M., Hoseini Sabzevari, S.A. et al. Microstructural Evolution and Bio-Corrosion Behavior of a CP-Ti Processed by Multi-Pass of Severe Plastic Deformation. JOM 74, 4621–4631 (2022). https://doi.org/10.1007/s11837-022-05415-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05415-9

Navigation