Skip to main content

Advertisement

Log in

Kinetic and Thermodynamic Studies on Lead-Rich Slag Reduction at Various CaO/SiO2 Ratios

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A bath smelting furnace is a clean technology replacing sinter machines to simultaneously produce lead-rich slag and lead metal. Lead-rich slag can be used as a feedstock for blast furnaces or smelting reduction furnaces to produce lead metal. Understanding the reduction mechanism of lead-rich slag by carbon provides useful information for the complete reduction of the lead oxide. Kinetic studies on the reduction of lead-rich slags with CaO/SiO2 ratios of 0.38, 0.56, and 0.80 were carried out in the temperature range 1073–1473 K. The volume of the product gas was measured continuously to represent the extent of lead-rich slag reduction. It was found that the reduction was initially chemically controlled and then diffusion controlled. At the chemically-controlled stage, the activation energy of the reduction was higher at lower CaO/SiO2 ratios. An increase of the CaO/SiO2 ratio from 0.38 to 0.56 can decrease the activation energy from 273 kJ/mol to 95 kJ/mol. At the diffusion-controlled stage, the activation energy was determined to be 392 kJ/mol, 294 kJ/mol, and 280 kJ/mol for the slags with CaO/SiO2 ratios of 0.38, 0.56, and 0.80, respectively. Formation of liquid plays an important role in the reduction of the lead-rich slag. The reduction mechanism has been analyzed by experimental results and thermodynamic calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H.Y. Chen, A.J. Li, and D.E. Finlow, J. Power Sources 191(1), 22–27. (2009).

    Article  Google Scholar 

  2. X. Zhu, L. Li, X. Sun, D. Yang, L. Gao, J. Liu, and J. Yang, Hydrometallurgy 117, 24–31. (2012).

    Article  Google Scholar 

  3. U.S. Geological Survey. “Mineral commodity summaries 2021” (U.S. Geological Survey, 2021) https://doi.org/10.3133/mcs2021

  4. L. Chen, T. Yang, S. Bin, W. Liu, D. Zhang, W. Bin, and Li. Zhang, JOM 66, 1664. https://doi.org/10.1007/s11837-014-1057-1 (2014).

    Article  Google Scholar 

  5. W. Gao, C. Wang, F. Yin, Y. Chen, and W. Yang, AMR 581, 904. (2012).

    Article  Google Scholar 

  6. W. Wu, P. Xin, and J. Wang, The latest development of oxygen bottom blowing lead smelting technology, in PbZn 2020: 9th International Symposium on Lead and Zinc Processing. (Springer, Cham, 2020), pp. 327–336.

    Chapter  Google Scholar 

  7. W. Li, J. Zhan, Y. Fan, C. Wei, C. Zhang, and J.-Y. Hwang, JOM 69, 784. https://doi.org/10.1007/s11837-016-2236-z (2017).

    Article  Google Scholar 

  8. L. Chen, Z. Hao, T. Yang, W. Liu, D. Zhang, Li. Zhang, S. Bin, and W. Bin, JOM 67, 1123. https://doi.org/10.1007/s11837-015-1375-y (2015).

    Article  Google Scholar 

  9. K. Upadhya, Metall. Mater. Trans. B 17, 271. https://doi.org/10.1007/BF02655074 (1986).

    Article  Google Scholar 

  10. N.N. Kinaev, E. Jak, and P.C. Hayes, Scand. J. Metall 34, 150. https://doi.org/10.1111/j.1600-0692.2005.00733.x (2005).

    Article  Google Scholar 

  11. B. Zhao, B. Errington, E. Jak, and P. Hayes, Can. Metall. Quart 49, 241. https://doi.org/10.1179/cmq.2010.49.3.241 (2010).

    Article  Google Scholar 

  12. X. Hou, K.C. Chou, and B. Zhao, J. Min. Metall., Sect. B: Metall. 49(2), 201–206. (2013).

    Article  Google Scholar 

  13. J. Liao, and B. Zhao, Calphad 74, 102282. https://doi.org/10.1016/j.calphad.2021.102282 (2021).

    Article  Google Scholar 

  14. C. Feng, M. Chu, J. Tang, Y. Tang, and Z. Liu, Steel. Res. Int 87, 1274. https://doi.org/10.1002/srin.201500355 (2016).

    Article  Google Scholar 

  15. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, and M.-A. Van Ende, Calphad 54, 35. https://doi.org/10.1016/j.calphad.2016.05.002 (2016).

    Article  Google Scholar 

  16. C.F. Dickinson, and G.R. Heal, Thermochim. Acta 340, 89. https://doi.org/10.1016/S0040-6031(99)00256-7 (1999).

    Article  Google Scholar 

  17. E. Bidari, and V. Aghazadeh, Metall. Mater. Trans. B 46(5), 2305–2314. (2015).

    Article  Google Scholar 

  18. F. Vegliò, M. Trifoni, F. Pagnanelli, and L. Toro, Hydrometallurgy 60, 167. https://doi.org/10.1016/S0304-386X(00)00197-3 (2001).

    Article  Google Scholar 

  19. Mark Pritzker, Chem. Eng. Sci 58, 473. https://doi.org/10.1016/S0009-2509(02)00554-7 (2003).

    Article  Google Scholar 

  20. S. He, J. Wang, X. Zhang, and Y. Li, Nonferrous Metals. 3, 13–16. (2010).

    Google Scholar 

  21. L. Yanting, Y. Tianzu, and L. Mingzhou, Chinese J. Nonferrous Metals 30(5), 1110–1118. (2020).

    Google Scholar 

  22. G. Pi, and Z. Jia, Nonferrous Metals. 6, 17–19. (2009).

    Google Scholar 

  23. J. Wang, Y. Dong, and G. Feng, Eng. Sci. 7, 256–259. (2005).

    Google Scholar 

  24. H. Kim, H. Matsuura, F. Tsukihashi, W. Wang, D.J. Min, and I. Sohn, Metall. Mater. Trans. B 44(1), 5–12. (2013).

    Article  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baojun Zhao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 99 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, S., Liao, C. & Zhao, B. Kinetic and Thermodynamic Studies on Lead-Rich Slag Reduction at Various CaO/SiO2 Ratios. JOM 74, 3625–3633 (2022). https://doi.org/10.1007/s11837-022-05413-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05413-x

Navigation