Skip to main content

Advertisement

Log in

Interfacial Cation Mixing and Microstructural Changes in Bilayer GTO/GZO Thin Films After Irradiation

  • Properties and Evolution of Defects and Interfaces
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In many applications involving functional oxides, composite structures consisting of multiple oxides and interfaces between the two are of particular interest, as they provide enhanced properties over the individual phases. Often, materials intended for radioisotope immobilization are composite structures, consisting of multiple chemistries and structures. In this work, two pyrochlore materials, Gd\(_2\)Zr\(_2\)O\(_7\) (GZO) and Gd\(_2\)Ti\(_2\)O\(_7\) (GTO) are interfaced in a bilayer structure and irradiated to test the composite’s capacity to accommodate lattice point defects and the potential for cation transport across the interface. Using x-ray energy dispersive spectroscopy after the pristine bilayer was irradiated to damage levels of 0.2–0.8 dpa using a 12 MeV Cu\(^{4+}\) ion beam, significant cation intermixing was observed by the highest dose. While, as might be expected, the bulk of the GTO layer easily amorphized, surprisingly, the GZO layer also amorphized with arelatively small dose. More interestingly, the structure maintained a crystalline layer at the original interface between the two pyrochlores, even though the interface moved significantly during the irradiation. These results are explained through a physical model for ballistic mixing in pyrochlore. These results highlight the complex structural response of oxide heterostructures under extreme conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.J. Buehler and A. Misra, MRS Bull. 44(1), 19 (2019). https://doi.org/10.1557/mrs.2018.323.

    Article  Google Scholar 

  2. E.T. Thostenson, C. Li, and T.-W. Chou, Compos. Sci. Technol. 65(3), 491 (2005). https://doi.org/10.1016/j.compscitech.2004.11.003.

    Article  Google Scholar 

  3. W. Han, M.J. Demkowicz, N.A. Mara, E. Fu, S. Sinha, A.D. Rollett, Y. Wang, J.S. Carpenter, I.J. Beyerlein, and A. Misra, Adv. Mater. 25(48), 6975 (2013).

    Article  Google Scholar 

  4. H.D. Wagner and R.A. Vaia, Mater. Today 7(11), 38 (2004).

    Article  Google Scholar 

  5. N. Mara, D. Bhattacharyya, P. Dickerson, R. Hoagland, and A. Misra, Appl. Phys. Lett. 92(23), 231901.

    Article  Google Scholar 

  6. L. Jiang, M. Powers, Y. Cui, B.K. Derby, and A. Misra, Mater. Sci. Eng. A 799, 140200 (2021).

    Article  Google Scholar 

  7. B.K. Derby, A. Chatterjee, and A. Misra, J. Appl. Phys. 128(3), 035303 (2020).

    Article  Google Scholar 

  8. A. Shlyakhtina and L. Shcherbakova, Russ. J. Electrochem. 48(1), 1 (2012).

    Article  Google Scholar 

  9. J. Lee, A. Urban, X. Li, D. Su, G. Hautier, and G. Ceder, Science 343(6170), 519 (2014). https://doi.org/10.1126/science.1246432.

    Article  Google Scholar 

  10. M. Lang, F. Zhang, J. Zhang, J. Wang, J. Lian, W.J. Weber, B. Schuster, C. Trautmann, R. Neumann, and R.C. Ewing, Nucl. Instrum. Methods Phys. Res. Sect. B 268(19), 2951 (2010). https://doi.org/10.1016/j.nimb.2010.05.016.

    Article  Google Scholar 

  11. C.R. Kreller and B.P. Uberuaga, Curr. Opin. Solid State Mater. Sci. 25(2), 100899 (2021). https://doi.org/10.1016/j.cossms.2021.100899.

    Article  Google Scholar 

  12. K.E. Sickafus, L. Minervini, R.W. Grimes, J.A. Valdez, M. Ishimaru, F. Li, K.J. McClellan, and T. Hartmann, Science 289(5480), 748 (2000). https://doi.org/10.1126/science.289.5480.748.

    Article  Google Scholar 

  13. J. Shamblin, C.L. Tracy, R.I. Palomares, E.C. O’Quinn, R.C. Ewing, J. Neuefeind, M. Feygenson, J. Behrens, and C. Trautmann, M. Lang, Acta Mater. 144, 60 (2018). https://doi.org/10.1016/j.actamat.2017.10.044.

    Article  Google Scholar 

  14. C.R. Kreller, J.A. Valdez, T.G. Holesinger, J. Morgan, Y. Wang, M. Tang, F.H. Garzon, R. Mukundan, E.L. Brosha, and B.P. Uberuaga, J. Mater. Chem. A 7, 3917 (2019). https://doi.org/10.1039/C8TA10967B.

    Article  Google Scholar 

  15. R. Perriot, B.P. Uberuaga, R.J. Zamora, D. Perez, and A.F. Voter, Nat. Commun. 8(1), 1 (2017).

    Article  Google Scholar 

  16. S.R. Spurgeon, Curr. Opin. Solid State Mater. Sci. 24(6), 100870 (2020). https://doi.org/10.1016/j.cossms.2020.100870.

    Article  Google Scholar 

  17. J. MacManus-Driscoll, M.P. Wells, C. Yun, J.-W. Lee, C.-B. Eom, and D.G. Schlom, APL Mater. 8(4), 040904 (2020).

    Article  Google Scholar 

  18. Y. Du, M. Gu, T. Varga, C. Wang, M.E. Bowden, and S.A. Chambers, ACS Appl. Mater. Interfaces 6(16), 14253 (2014). https://doi.org/10.1021/am5035686.

    Article  Google Scholar 

  19. S. Choudhury, D. Morgan, and B.P. Uberuaga, Sci. Rep. 4(1), 1 (2014).

    Google Scholar 

  20. S.A. Chambers, M.H. Engelhard, V. Shutthanandan, Z. Zhu, T.C. Droubay, L. Qiao, P.V. Sushko, T. Feng, H.D. Lee, T. Gustafsson, E. Garfunkel, A.B. Shah, J.-M. Zuo, and Q.M. Ramasse, Surf. Sci. Rep. 65(10), 317 (2010). https://doi.org/10.1016/j.surfrep.2010.09.001.

    Article  Google Scholar 

  21. M.V. Ganduglia-Pirovano, A. Hofmann, and J. Sauer, Surf. Sci. Rep. 62(6), 219 (2007). https://doi.org/10.1016/j.surfrep.2007.03.002.

    Article  Google Scholar 

  22. S. He and S.P. Jiang, Progress Natl. Sci. Mater. Int. 31(3), 341 (2021). https://doi.org/10.1016/j.pnsc.2021.03.002.

    Article  Google Scholar 

  23. T.C. Kaspar, S. Hong, M.E. Bowden, T. Varga, P. Yan, C. Wang, S.R. Spurgeon, R.B. Comes, P. Ramuhalli, and C.H. Henager, Sci. Rep. 8(1), 1 (2018).

    Article  Google Scholar 

  24. S.R. Spurgeon, T.C. Kaspar, V. Shutthanandan, J. Gigax, L. Shao, and M. Sassi, Adv. Mater. Interfaces 7(8), 1901944 (2020).

    Article  Google Scholar 

  25. M.T. Janish, M.M. Schneider, J.A. Valdez, K.J. McClellan, D.D. Byler, Y. Wang, D. Chen, T.G. Holesinger, and B.P. Uberuaga, Acta Mater. 194, 403 (2020). https://doi.org/10.1016/j.actamat.2020.04.026.

    Article  Google Scholar 

  26. K.E. MacArthur, T.J.A. Slater, S.J. Haigh, D. Ozkaya, P.D. Nellist, and S. Lozano-Perez, Microsc. Microanal. 22(1), 71 (2016). https://doi.org/10.1017/S1431927615015494.

    Article  Google Scholar 

  27. R.F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope (Springer, 2011).

  28. G. Pilania, K.R. Whittle, C. Jiang, R.W. Grimes, C.R. Stanek, K.E. Sickafus, and B.P. Uberuaga, Chem. Mater. 29(6), 2574 (2017). https://doi.org/10.1021/acs.chemmater.6b04666.

    Article  Google Scholar 

  29. J.F. Ziegler, M.D. Ziegler, and J.P. Biersack, Nucl. Instrum. Methods Phys. Res. Sect. B 268(11–12), 1818 (2010).

    Article  Google Scholar 

  30. A. Anders, Thin Solid Films 518(15), 4087 (2010). https://doi.org/10.1016/j.tsf.2009.10.145.

    Article  Google Scholar 

  31. J.A. Díaz-Guillén, O.J. Durá, M.R. Díaz-Guillén, E. Bauer, M.A. López de la Torre, and A.F. Fuentes, J. Alloys Compd. 649, 1145 (2015). https://doi.org/10.1016/j.jallcom.2015.07.146.

    Article  Google Scholar 

  32. B.K. Derby, T.G. Holesinger, J.A. Valdez, B.P. Uberuaga, and C.R. Kreller, Mater. Des. 199, 109430 (2021).

    Article  Google Scholar 

  33. B. Derby, Y. Cui, J. Baldwin, and A. Misra, Thin Solid Films 647, 50 (2018).

    Article  Google Scholar 

  34. S.-X. Wang, B. Begg, L.-M. Wang, R. Ewing, W. Weber, and K.G. Kutty, J. Mater. Res. 14(12), 4470 (1999).

    Article  Google Scholar 

  35. K. Liu, K. Zhang, T. Deng, W. Li, and H. Zhang, Ceram. Int. 46(10, Part B), 16987 (2020). https://doi.org/10.1016/j.ceramint.2020.03.283.

    Article  Google Scholar 

  36. Z. Huang, N. Ma, J. Qi, X. Guo, M. Yang, Z. Tang, Y. Zhang, Y. Han, D. Wu, and T. Lu, J. Am. Ceram. Soc. 102(8), 4911 (2019). https://doi.org/10.1111/jace.16364.

    Article  Google Scholar 

  37. T.D. Shen, Nucl. Instrum. Methods Phys. Res. Sect. B 266(6), 921 (2008). https://doi.org/10.1016/j.nimb.2008.01.039.

    Article  Google Scholar 

  38. A. Meldrum, L.A. Boatner, and R.C. Ewing, Phys. Rev. Lett. 88, 025503 (2001). https://doi.org/10.1103/PhysRevLett.88.025503.

    Article  Google Scholar 

  39. S. Zheng, S. Shao, J. Zhang, Y. Wang, M.J. Demkowicz, I.J. Beyerlein, and N.A. Mara, Sci. Rep. 5(1), 1 (2015).

    Google Scholar 

  40. S. Shao, J. Wang, A. Misra, and R.G. Hoagland, Sci. Rep. 3(1), 1 (2013).

    Google Scholar 

  41. B.P. Uberuaga, S. Choudhury, and A. Caro, J. Nucl. Mater. 462, 402 (2015). https://doi.org/10.1016/j.jnucmat.2014.11.073.

    Article  Google Scholar 

  42. M. Ayanoglu and A. Motta, J. Nucl. Mater. 543, 152636 (2021).

    Article  Google Scholar 

  43. S. Agarwal, M. Liedke, A. Jones, E. Reed, A. Kohnert, B. Uberuaga, Y. Wang, J. Cooper, D. Kaoumi, N. Li et al., Sci. Adv. 6(31), 8437 (2020).

    Article  Google Scholar 

  44. M. Lattemann, A. Ehiasarian, J. Bohlmark, P. Persson, and U. Helmersson, Surf. Coat. Technol. 200(22–23), 6495 (2006).

    Article  Google Scholar 

  45. K.E. Sickafus, R.W. Grimes, J.A. Valdez, A. Cleave, M. Tang, M. Ishimaru, S.M. Corish, C.R. Stanek, and B.P. Uberuaga, Nat. Mater. 6(3), 217 (2007).

    Article  Google Scholar 

  46. T.G. Holesinger, J.A. Valdez, M.T. Janish, Y. Wang, and B.P. Uberuaga, Acta Mater. 164, 250 (2019). https://doi.org/10.1016/j.actamat.2018.10.049.

    Article  Google Scholar 

  47. T. Chakrabarti, N. Verma, and S. Manna, Mater. Des. 119, 425 (2017). https://doi.org/10.1016/j.matdes.2017.01.085.

    Article  Google Scholar 

  48. C. You, W. Xie, S. Miao, T. Liang, L. Zeng, X. Zhang, and H. Wang, Mater. Des. 200, 109455 (2021). https://doi.org/10.1016/j.matdes.2021.109455.

    Article  Google Scholar 

  49. R. Perriot and B.P. Uberuaga, J. Mater. Chem. A 3(21), 11554 (2015).

    Article  Google Scholar 

  50. M.J. Zhuo, E.G. Fu, L. Yan, Y.Q. Wang, Y.Y. Zhang, R.M. Dickerson, B.P. Uberuaga, A. Misra, M. Nastasi, and Q.X. Jia, Scripta Mater. 65(9), 807 (2011). https://doi.org/10.1016/j.scriptamat.2011.07.037.

    Article  Google Scholar 

  51. J.M. Poate, G. Foti, and D.C. Jacobson, Surface Modification and Alloying: By Laser, Ion, and Electron Beams, NATO Conference Series (2013).

  52. M. Nastasi and J.W. Mayer, Mater. Sci. Eng. R. Rep. 12(1), 1 (1994). https://doi.org/10.1016/0927-796X(94)90005-1.

    Article  Google Scholar 

  53. P. Moon and H. Tuller, Solid State Ionics 28, 470 (1988).

    Article  Google Scholar 

  54. J.A. Aguiar, M. Zhuo, Z. Bi, E. Fu, Y. Wang, P.P. Dholabhai, A. Misra, Q. Jia, and B.P. Uberuaga, J. Mater. Res. 29(16), 1699 (2014). https://doi.org/10.1557/jmr.2014.217.

    Article  Google Scholar 

Download references

Acknowledgements

Research presented in this article was primarily supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under grant number LANLE4BU. B.K.D. also acknowledges the Laboratory Directed Research and Development program of Los Alamos National Laboratory under Project Number(s) 20210760PRD1, which supported the chemical analysis at the interface. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA, under contract 89233218CNA000001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. K. Derby.

Ethics declarations

Conflict of interest

None of the authors have a financial/commercial conflict of interest to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3510 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derby, B.K., Sharma, Y., Valdez, J.A. et al. Interfacial Cation Mixing and Microstructural Changes in Bilayer GTO/GZO Thin Films After Irradiation. JOM 74, 4015–4025 (2022). https://doi.org/10.1007/s11837-022-05402-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05402-0

Navigation