Skip to main content

Advertisement

Log in

Electrochemical Behavior of Tetraethylammonium-Hydrogen Sulfate-Based Electrodissolution-Coupled Hafnium Alkoxide Synthesis

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Currently, the conventional halide synthesis method of preparing hafnium alkoxides [Hf(OR)4, R is an alkyl] has problems of inefficiency, a heavy CO2 emission footprint, and substantial solid and gas waste, which severely hinders its wide deployment. Herein, we propose an electrodissolution-coupled Hf(OR)4 synthesis system using an alcohol solvent and Hf metal as feedstock for the efficient, low-carbon and waste-free electro-synthesis of Hf(OR)4. The electrochemical behavior of the tetraethylammonium-hydrogen sulfate (Et4NHSO4)-based EHS process is investigated by cyclic voltammetry, linear sweep voltammetry, Tafel, and electrochemical impedance spectroscopy, complemented with SEM observation. The anodic hafnium dissolution/corrosion occurs inside the passive film while the cathodic ethanol dehydrogenation occurs in a two-stage pathway. Tafel extrapolation and numerical fitting analysis acquires important kinetics parameters, such as corrosion current density, exchange current density, and apparent activation energy as well as solution, polarization and “Warburg” resistances, etc. This work can provide theoretical guidance for the efficient operation of EHS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.G. Gordon, J. Becker, D. Hausmann, and S. Suh, Chem. Mater. 13, 2463. https://doi.org/10.1021/cm010145k (2001).

    Article  Google Scholar 

  2. C. Mui and C.B. Musgrave, J. Phys. Chem. B 108, 15150. https://doi.org/10.1021/jp037507r (2004).

    Article  Google Scholar 

  3. J.A. del Alamo, Nature 479, 317. https://doi.org/10.1038/nature10677 (2011).

    Article  Google Scholar 

  4. H. Ko, K. Takei, R. Kapadia, S. Chuang, H. Fang, P.W. Leu, K. Ganapathi, E. Plis, H.S. Kim, S.-Y. Chen, M. Madsen, A.C. Ford, Y.-L. Chueh, S. Krishna, S. Salahuddin, and A. Javey, Nature 468, 286. https://doi.org/10.1038/nature09541 (2010).

    Article  Google Scholar 

  5. M. Leskelä and M. Ritala, Thin Solid Films 409, 138. https://doi.org/10.1016/S0040-6090(02)00117-7 (2002).

    Article  Google Scholar 

  6. M.J. Mleczko, C. Zhang, H.R. Lee, H.-H. Kuo, B. Magyari-Köpe, R.G. Moore, Z.-X. Shen, I.R. Fisher, Y. Nishi, and E. Pop, Sci. Adv. 3, e1700481. https://doi.org/10.1126/sciadv.1700481 (2017).

    Article  Google Scholar 

  7. Y. Widjaja and C.B. Musgrave, Appl. Phys. Lett. 81, 304. https://doi.org/10.1063/1.1490415 (2002).

    Article  Google Scholar 

  8. G.D. Wilk, R.M. Wallace, and J.M. Anthony, J. Appl. Phys. 89, 5243. https://doi.org/10.1063/1.1361065 (2001).

    Article  Google Scholar 

  9. D.M. Hausmann, E. Kim, J. Becker, and R.G. Gordon, Chem. Mater. 14, 4350. https://doi.org/10.1021/cm020357x (2002).

    Article  Google Scholar 

  10. V. Miikkulainen, M. Leskelä, M. Ritala, and R.L. Puurunen, J. Appl. Phys. 113, 021301. https://doi.org/10.1063/1.4757907 (2013).

    Article  Google Scholar 

  11. D. Bradley, R.C. Mehrotra, I. Rothwell, and A. Singh, Alkoxo and Aryloxo Derivatives of Metals (Elsevier, Amsterdam, 2001), pp 383–443.

    Book  Google Scholar 

  12. Y. Yuan and A. Lei, Nat. Commun. 11, 802. https://doi.org/10.1038/s41467-020-14322-z (2020).

    Article  Google Scholar 

  13. C. Wang, K. Jiang, T.W. Jones, S. Yang, H. Yu, P. Feron, and K. Li, Chem. Eng. J. 427, 131981. https://doi.org/10.1016/j.cej.2021.131981 (2022).

    Article  Google Scholar 

  14. R. Sharifian, R. Wagterveld, I. Digdaya, C. Xiang, and D. Vermaas, Energy Environ. Sci. 14, 781. (2021).

    Article  Google Scholar 

  15. M. Van Geem Kevin, V. Galvita Vladimir, and B. Marin Guy, Science 364, 734. https://doi.org/10.1126/science.aax5179 (2019).

    Article  Google Scholar 

  16. H.-P. Yang, S.-H. Yang, Y.-N. Cai, G.-F. Hou, J.-Y. Xia, and M.-T. Tang, Trans. Nonferrous Met. Soc. China 21, 179. https://doi.org/10.1016/S1003-6326(11)60696-1 (2011).

    Article  Google Scholar 

  17. A.J. Bard and L.R. Faulkner, Electrochem. Methods 2, 580. (2001).

    Google Scholar 

  18. A. Popova, E. Sokolova, S. Raicheva, and M. Christov, Corros. Sci. 45, 33. https://doi.org/10.1016/S0010-938X(02)00072-0 (2003).

    Article  Google Scholar 

  19. E.P. Kovsman, S.I. Andruseva, L.I. Solovjeva, V.I. Fedyaev, M.N. Adamova, and T.V. Rogova, J. Sol-Gel. Sci. Technol. 2, 61. https://doi.org/10.1007/BF00486214 (1994).

    Article  Google Scholar 

  20. C. Wang, S. Yang, Y. Chen, Y. Wu, J. He, and C.-B. Tang, Trans. Nonferrous Met. Soc. China 27, 694. https://doi.org/10.1016/S1003-6326(17)60077-3 (2017).

    Article  Google Scholar 

  21. I. Betova, M. Bojinov, P. Kinnunen, T. Laitinen, P. Pohjanne, and T. Saario, Electrochim. Acta 47, 2093. https://doi.org/10.1016/S0013-4686(02)00080-4 (2003).

    Article  Google Scholar 

  22. W. Ye, Y. Li, and F. Wang, Electrochim. Acta 54, 1339. https://doi.org/10.1016/j.electacta.2008.08.073 (2009).

    Article  Google Scholar 

  23. G. Song, Corros. Sci. 47, 1953. https://doi.org/10.1016/j.corsci.2004.09.007 (2005).

    Article  Google Scholar 

  24. D.A. Aikens, J. Chem. Educ. 60, A25. https://doi.org/10.1021/ed060pA25.1 (1983).

    Article  Google Scholar 

  25. C. Wang, S. Yang, Y. Chen, B. Wang, J. He, and C. Tang, RSC Adv. 5, 34580. https://doi.org/10.1039/C5RA02233A (2015).

    Article  Google Scholar 

  26. J.R. Macdonald, Ann. Biomed. Eng. 20, 289. https://doi.org/10.1007/BF02368532 (1992).

    Article  Google Scholar 

  27. C. Wang, S. Yang, and Y. Chen, J. Appl. Electrochem. 49, 539. https://doi.org/10.1007/s10800-019-01301-6 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Innovation Program of Hunan Province (No.2021RC2002) and the Natural Science Foundation of China (No.51374254).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhong Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 563 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Yang, S. & Wang, C. Electrochemical Behavior of Tetraethylammonium-Hydrogen Sulfate-Based Electrodissolution-Coupled Hafnium Alkoxide Synthesis. JOM 74, 3548–3556 (2022). https://doi.org/10.1007/s11837-022-05393-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05393-y

Navigation