Skip to main content
Log in

Effect of Cryogenic Heat Treatment and Heat Treatment on the Influence of Mechanical, Energy, and Wear Properties of 316L Stainless Steel by Selective Laser Melting

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

This article has been updated

Abstract

The effects of different heat and cryogenic treatments on the mechanical and tribological properties of 316L stainless steel formed by selective laser melting were investigated. The mechanical properties of samples processed by heat treatment, cryogenic treatment, and a combination of heat and cryogenic treatment were compared. It was found that the samples treated by (600°C × 3 h) + (−196°C × 24 h) exhibited better mechanical properties and the best strength and plasticity, with a tensile strength of 585 MPa and elongation of 68.5%. The experimental results of friction and wear showed that the sample treated by (600°C × 3 h) + (−196°C × 24 h) exhibited a low friction coefficient of about 0.7 and a wear amount of 2.8 × 10−3 mm3, indicating that the material has strong wear resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

  • 29 August 2022

    This article was updated to delete duplicated word from the title.

References

  1. G. Vukelic, G. Vizentin, S. Ivosevic, and Z. Bozic, Eng. Fail. Anal. https://doi.org/10.1016/j.engfailanal.2022.106132 (2022).

    Article  Google Scholar 

  2. K. Ting, Nucl. Eng. Des. 191, 245 https://doi.org/10.1016/S0029-5493(99)00146-6 (1999).

    Article  Google Scholar 

  3. R.G. Faulkner, J. Nucl. Mater. 251, 269 https://doi.org/10.1016/S0022-3115(97)00248-1 (1997).

    Article  Google Scholar 

  4. X. Wang, M. Jiang, Z. Zhou, J. Gou, and D. Hui, Compos. B Eng. 110, 442 https://doi.org/10.1016/j.compositesb.2016.11.034 (2017).

    Article  Google Scholar 

  5. J.M. Chacon, M.A. Caminero, P.J. Nunez, E. Garcia-Plaza, I. Garcia-Moreno, and J.M. Reverte, Compos. Sci. Technol 181, 107688.1 https://doi.org/10.1016/j.compscitech.2019.107688 (2019).

    Article  Google Scholar 

  6. G. Liao, Z. Li, Y. Cheng, D. Xu, and Y. Zhu, Mater. Des. 139, 283 https://doi.org/10.1016/j.matdes.2017.11.027 (2017).

    Article  Google Scholar 

  7. A.N. Dickson, J.N. Barry, K.A. Mcdonnell, and D.P. Dowling, Addit. Manuf. 16, 146 https://doi.org/10.1016/j.addma.2017.06.004 (2017).

    Article  Google Scholar 

  8. T. Kurzynowski, A. Pawlak, and I. Smolina, Arch. Civ. Mech. Eng. https://doi.org/10.1007/s43452-020-00033-1 (2020).

    Article  Google Scholar 

  9. M. Petr, H. Jiri, S. Kristýna, K. Lucie, P. Marek, K. Kateřina, and K. Pavel, Materials (Basel, Switzerland) https://doi.org/10.3390/ma13194362 (2020).

    Article  Google Scholar 

  10. M.S. Pham, B. Dovgyy, and P.A. Hooper, Mater. Sci. Eng. 704, 102 https://doi.org/10.1016/j.msea.2017.07.082 (2017).

    Article  Google Scholar 

  11. K. Tomasz, B. Jerzy, Z. Paweł, and G. Damian, Materials (Basel, Switzerland) https://doi.org/10.3390/ma13194372 (2020).

    Article  Google Scholar 

  12. J.K. Raval, A.A. Kazi, X. Guo, R. Zvanut, C. Lee, and B.L. Tai, JOM 74, 1120 https://doi.org/10.1007/s11837-021-05041-x (2022).

    Article  Google Scholar 

  13. C. Galy, E. Le Guen, E. Lacoste, and C. Arvieu, Addit. Manuf. 22, 165 https://doi.org/10.1016/j.addma.2018.05.005 (2018).

    Article  Google Scholar 

  14. E. Liverani, S. Toschi, L. Ceschini, and A. Fortunato, J. Mater. Process. Technol. 249, 255 https://doi.org/10.1016/j.jmatprotec.2017.05.042 (2017).

    Article  Google Scholar 

  15. L.N.C.H. Salem, M.M. Attallah, and H.G. Salem, Mater. Sci. Eng. A https://doi.org/10.1016/j.msea.2019.138387 (2019).

    Article  Google Scholar 

  16. Y. Zhou, L.C. Duan, F. Li, K.Y. Chen, and S.F. Wen, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2021.161841 (2022).

    Article  Google Scholar 

  17. C.S. Zhou, S.Y. Hu, Q.Y. Shi, H.M. Tao, Y.Y. Song, J.Y. Zheng, P. Xu, and L. Zhang, Corros. Sci. https://doi.org/10.1016/j.corsci.2019.108353 (2020).

    Article  Google Scholar 

  18. H.M. Zhang, D.D. Gu, C.L. Ma, M. Guo, J.K. Yang, and R. Wang, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. https://doi.org/10.1016/j.msea.2019.138294 (2019).

    Article  Google Scholar 

  19. A. Tridello, J. Fiocchi, C.A. Biffi, G. Chiandussi, M. Rossetto, A. Tuissi, and D.S. Paolino, Int. J. Fatigue 124, 435 https://doi.org/10.1016/j.ijfatigue.2019.02.020 (2019).

    Article  Google Scholar 

  20. P. Krakhmalev, G. Fredriksson, K. Svensson, I. Yadroitsev, I. Yadroitsava, M. Thuvander, and R. Peng, Metals https://doi.org/10.3390/met8080643 (2018).

    Article  Google Scholar 

  21. W.S. Shin, B. Son, W.S. Song, H. Sohn, H. Jang, Y.J. Kim, and C. Park, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. https://doi.org/10.1016/j.msea.2021.140805 (2021).

    Article  Google Scholar 

  22. A. Yadollahi, N. Shamsaei, S.M. Thompson, and D.W. Seely, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 644, 171 https://doi.org/10.1016/j.msea.2015.07.056 (2015).

    Article  Google Scholar 

  23. E.U. Yasa and J. Kruth, Procedia Eng. 19, 389 https://doi.org/10.1016/j.proeng.2011.11.130 (2011).

    Article  Google Scholar 

  24. B. Podgornik, I. Paulin, B. Zajec, S. Jacobson, and V. Leskovsek, J. Mater. Process. Technol. 229, 398 https://doi.org/10.1016/j.jmatprotec.2015.09.045 (2016).

    Article  Google Scholar 

  25. N.S. Kalsi, R. Sehgal, and V.S. Sharma, Adv. Manuf. Process. 25, 1077 https://doi.org/10.1080/10426911003720862 (2010).

    Article  Google Scholar 

  26. S. Li, L. Deng, X. Wu, Y. Min, and H. Wang, Cryogenics 50, 754 https://doi.org/10.1016/j.cryogenics.2010.09.002 (2010).

    Article  Google Scholar 

  27. W. Zhisheng, S. Ping, L. Jinrui, and H. Shengsun, Mater. Des. https://doi.org/10.1016/S0261-3069(03)00029-3 (2003).

    Article  Google Scholar 

  28. A. Molinari, M. Pellizzari, S. Gialanella, G. Straffelini, and K.H. Stiasny, J. Mater. Process. Technol. 118, 350 https://doi.org/10.1016/S0924-0136(01)00973-6 (2001).

    Article  Google Scholar 

  29. A. Oppenkowski, S. Weber, and W. Theisen, J. Mater. Process. Technol. 210, 1949 https://doi.org/10.1016/j.jmatprotec.2010.07.007 (2010).

    Article  Google Scholar 

  30. R.F. Barron, Cryogenics 22, 409 https://doi.org/10.1016/0011-2275(82)90085-6 (1982).

    Article  Google Scholar 

  31. D.M. Lal, S. Renganarayanan, and A. Kalanidhi, Cryogenics 41, 149 https://doi.org/10.1016/S0011-2275(01)00065-0 (2001).

    Article  Google Scholar 

  32. N. Yan, H. Di, R. Misra, H. Huang, and Y. Li, Mater. Sci. Eng. A 753, 11 https://doi.org/10.1016/j.msea.2019.01.026 (2019).

    Article  Google Scholar 

  33. J. Liao, L. Jingwen, L. Liejun, P. Jihua, and G. Jixiang, J. Phys. Conf. Ser. https://doi.org/10.1088/1742-6596/1676/1/012098 (2020).

    Article  Google Scholar 

  34. Q. Wang, X. Ning, C. Qi, and B. Mao, Proceedings of the FISITA 2012 World Automotive Congress, pp 1701–1707. https://doi.org/10.1007/978-3-642-33738-3_64 (2013).

  35. S. Li, X. Yuan, W. Jiang, H. Sun, J. Li, K. Zhao, and M. Yang, Mater. Sci. Eng. A https://doi.org/10.1016/j.msea.2014.03.061 (2014).

    Article  Google Scholar 

  36. S. Li, M. Na, J. Li, and X. Wu, Cryogenics 57, 1 https://doi.org/10.1016/j.cryogenics.2013.03.003 (2013).

    Article  Google Scholar 

  37. H.-H. Liu, J. Wang, B.-L. Shen, H.-S. Yang, S.-J. Gao, and S.-J. Huang, Mater. Des. https://doi.org/10.1016/j.matdes.2005.09.007 (2007).

    Article  Google Scholar 

  38. H.U. Feng, W.U. Kaiming, P.D. Hodgson, and A.A. Shirzadi, ISIJ Int. 54, 222 https://doi.org/10.2355/isijinternational.54.222 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China for the generous funding for this research program (Grant No. 51205359) and State Key Laboratory of Tribology (SKLTKF13A06), Tsinghua University, Beijing, P.R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhua Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 173 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wang, Y., Wang, J. et al. Effect of Cryogenic Heat Treatment and Heat Treatment on the Influence of Mechanical, Energy, and Wear Properties of 316L Stainless Steel by Selective Laser Melting. JOM 74, 3855–3868 (2022). https://doi.org/10.1007/s11837-022-05382-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05382-1

Navigation