Skip to main content
Log in

Effects of Corona Treatment on Cellular Attachment and Morphology on Polydimethylsiloxane Micropillar Substrates

  • Interactions between Biomaterials and Biological Tissues and Cells
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Polydimethylsiloxane (PDMS) is widely used in biomedical and microfluidic research platforms. However, its intrinsic hydrophobic nature hinders cellular attachment on the PDMS substrates. Surface modification is required to promote cellular attachment and growth. Corona discharge treatment offers a facile and robust technique for the PDMS surface modification. In this study, the effects of corona discharge treatment on the cellular attachment and morphology have been systematically investigated. The main conclusions are: (1) With the increase of corona discharge time, the contact angle and surface energy are significantly improved mainly because of the conversion of hydrophobic methyl groups into hydrophilic silanol groups. However, further increase results in deterioration of the surface wettability due to the cracks. (2) At an extremely thin sample of 0.1 mm, the contact angle is 22.7°. At the sample thickness from 0.5 mm to 1.5 mm, the contact angle increases significantly from 4.6° to 19.4°. (3) With the increase of the corona discharge time and sample thickness, both the number of attached cells and aspect ratio increase significantly first and then decrease significantly. The optimal conditions observed are the sample thickness of 0.5 mm at the corona discharge time of 60 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Gökaltun, Y.B.A. Kang, M.L. Yarmush, O.B. Usta, and A. Asatekin, Sci. Rep. 9, 1 (2019)

    Article  Google Scholar 

  2. A. Gokaltun, M.L. Yarmush, A. Asatekin, and O.B. Usta, Technology 5, 1 (2017)

    Article  Google Scholar 

  3. S. Krishnamoorthy, Z. Zhang, and C. Xu, Bio-Des. Manuf. 3, 60 (2020)

    Article  Google Scholar 

  4. W. Bian, B. Liau, N. Badie, and N. Bursac, Nat. Protoc. 4, 1522 (2009)

    Article  Google Scholar 

  5. K.A. Kilian, B. Bugarija, B.T. Lahn, and M. Mrksich, Proc. Natl. Acad. Sci. 107, 4872 (2010)

    Article  Google Scholar 

  6. D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, and P. Schiavone, Microelectron. Eng. 85, 1289 (2008)

    Article  Google Scholar 

  7. A. Saez, M. Ghibaudo, A. Buguin, P. Silberzan, and B. Ladoux, Proc. Natl. Acad. Sci. 104, 8281 (2007)

    Article  Google Scholar 

  8. Y.J. Chuah, Z.T. Heng, J.S. Tan, L.M. Tay, C.S. Lim, Y. Kang, and D.A. Wang, Colloids Surf., B 191, 110995 (2020)

    Article  Google Scholar 

  9. N. Hasirci, T. Endogan, E. Vardar, A. Kiziltay, and V. Hasirci, Surf. Interface Anal. 42, 486 (2010)

    Article  Google Scholar 

  10. R. Langer and J.P. Vacanti, Science 260, 920 (1993)

    Article  Google Scholar 

  11. J.H. Lee, G. Khang, J.W. Lee, and H.B. Lee, J. Colloid Interface Sci. 205, 323 (1998)

    Article  Google Scholar 

  12. F. Akther, S.B. Yakob, N.T. Nguyen, and H.T. Ta, Biosensors 10, 182 (2020)

    Article  Google Scholar 

  13. F. Abbasi, H. Mirzadeh, and A.A. Katbab, Polym. Int. 50, 1279 (2001)

    Article  Google Scholar 

  14. S. Dogru, D. Aydemir, N. Salman, N.N. Ulusu, and B.E. Alaca, J. Mech. Behav. Biomed. Mater. 103, 103538 (2020)

    Article  Google Scholar 

  15. M. Nakamura, N. Hori, H. Ando, S. Namba, T. Toyama, N. Nishimiya, and K. Yamashita, Mater. Sci. Eng., C 62, 283 (2016)

    Article  Google Scholar 

  16. I. Wong and C.M. Ho, Microfluid. Nanofluid. 7, 291 (2009)

    Article  Google Scholar 

  17. Y. Yang, K. Kulangara, R.T. Lam, R. Dharmawan, and K.W. Leong, ACS Nano 6, 8591 (2012)

    Article  Google Scholar 

  18. S.Z. Yousefi, P.S. Tabatabaei-Panah, and J. Seyfi, Colloids Surf., B 167, 492 (2018)

    Article  Google Scholar 

  19. F. Zan, Q. Wei, L. Fang, M. Xian, Y. Ke, and G. Wu, ACS Biomater. Sci. Eng. 6, 912 (2019)

    Article  Google Scholar 

  20. J. Zhou, A.V. Ellis, and N.H. Voelcker, Electrophoresis 31, 2 (2010)

    Article  Google Scholar 

  21. M. Amerian, M. Amerian, M. Sameti, and E. Seyedjafari, J. Biomed. Mater. Res., Part A 107, 2806 (2019)

    Article  Google Scholar 

  22. K. Fateh-Alavi and U.W. Gedde, Polym. Degrad. Stab. 84, 469 (2004)

    Article  Google Scholar 

  23. K. Haubert, T. Drier, and D. Beebe, Lab Chip 6, 1548 (2006)

    Article  Google Scholar 

  24. D. Huh, K. Mills, X. Zhu, M.A. Burns, M. Thouless, and S. Takayama, Nat. Mater. 6, 424 (2007)

    Article  Google Scholar 

  25. A. Borók, K. Laboda, and A. Bonyár, Biosensors 11, 292 (2021)

    Article  Google Scholar 

  26. K. Kim, S.W. Park, and S.S. Yang, BioChip J. 4, 148 (2010)

    Article  Google Scholar 

  27. J.R. Hollahan and G.L. Carlson, J. Appl. Polym. Sci. 14, 2499 (1970)

    Article  Google Scholar 

  28. A. Tóth, I. Bertóti, M. Blazsó, G. Bánhegyi, A. Bognar, and P. Szaplonczay, J. Appl. Polym. Sci. 52, 1293 (1994)

    Article  Google Scholar 

  29. S. Bhattacharya, A. Datta, J.M. Berg, and S. Gangopadhyay, J. Microelectromech. Syst. 14, 590 (2005)

    Article  Google Scholar 

  30. M.E. Deagen, E.P. Chan, L.S. Schadler, and C.K. Ullal, ACS Appl. Polym. Mater. 1, 997 (2019)

    Article  Google Scholar 

  31. M.J. Owen and P.J. Smith, J. Adhes. Sci. Technol. 8, 1063 (1994)

    Article  Google Scholar 

  32. P.J. Wipff, H. Majd, C. Acharya, L. Buscemi, J.J. Meister, and B. Hinz, Biomaterials 30, 1781 (2009)

    Article  Google Scholar 

  33. J. Wala, D. Maji, and S. Das, Biomed. Mater. 12, 065002 (2017)

    Article  Google Scholar 

  34. S. Li, F. Zhao, Y. Zhan, X. Liu, T. Hun, H. Zhang, C. Qiu, J. He, Z. Yi, and Y. Sun, J. Med. Biol. Eng. 38, 596 (2018)

    Article  Google Scholar 

  35. J. Wei, J. Shi, B. Wang, Y. Tang, X. Tu, E. Roy, B. Ladoux, and Y. Chen, Microelectron. Eng. 158, 22 (2016)

    Article  Google Scholar 

  36. W. Xia, W. Liu, L. Cui, Y. Liu, W. Zhong, D. Liu, J. Wu, K. Chua, and Y. Cao, J. Biomed. Mater. Res. Part B: Appl. Biomater. 71, 373 (2004)

    Article  Google Scholar 

  37. D. Bodas and C. Khan-Malek, Sens. Actuators, B Chem. 123, 368 (2007)

    Article  Google Scholar 

  38. H. Xu, J. Liu, Z. Zhang, and C. Xu, Bio-Des. Manuf. https://doi.org/10.1007/s42242-022-00183-6 (2022)

    Article  Google Scholar 

  39. C. Mk, Langmuir 7, 1013 (1991)

    Article  Google Scholar 

  40. S. Krishnamoorthy, H. Xu, Z. Zhang, and C. Xu, Acta Bioeng. Biomech. 23, 147 (2021)

    Article  Google Scholar 

  41. F.A. Bayley, J.L. Liao, P.N. Stavrinou, A. Chiche, and J.T. Cabral, Soft Matter 10, 1155 (2014)

    Article  Google Scholar 

  42. B. He, J. Lee, and N.A. Patankar, Colloids Surf., A 248, 101 (2004)

    Article  Google Scholar 

  43. H. Hillborg, J. Ankner, U.W. Gedde, G. Smith, H. Yasuda, and K. Wikström, Polymer 41, 6851 (2000)

    Article  Google Scholar 

  44. H. Hillborg, M. Sandelin, and U.W. Gedde, Polymer 42, 7349 (2001)

    Article  Google Scholar 

  45. P. Zheng and T.J. McCarthy, Langmuir 26, 18585 (2010)

    Article  Google Scholar 

  46. H. Hillborg and U. Gedde, IEEE Trans. Dielectr. Electr. Insul. 6, 703 (1999)

    Article  Google Scholar 

  47. E. Delplanque, A. Aymard, D. Dalmas, and J. Scheibert, J. Micromech. Microeng. 32, 045006 (2022)

    Article  Google Scholar 

  48. A.T. Nguyen, S.R. Sathe, and E.K. Yim, J. Phys.: Condens. Matter 28, 183001 (2016)

    Google Scholar 

  49. J. Solon, I. Levental, K. Sengupta, P.C. Georges, and P.A. Janmey, Biophys. J . 93, 4453 (2007)

    Article  Google Scholar 

  50. D. Zhang, H. Suo, J. Qian, J. Yin, J. Fu, and Y. Huang, Bio-Des. Manuf. 3, 348 (2020)

    Article  Google Scholar 

  51. H. Zhang and M. Chiao, J. Med. Biol. Eng. 35, 143 (2015)

    Article  Google Scholar 

  52. K.K. Chittur, Biomaterials 19, 357 (1998)

    Article  Google Scholar 

  53. S. Hemmilä, J.V. Cauich-Rodríguez, J. Kreutzer, and P. Kallio, Appl. Surf. Sci. 258, 9864 (2012)

    Article  Google Scholar 

  54. J.A. Vickers, M.M. Caulum, and C.S. Henry, Anal. Chem. 78, 7446 (2006)

    Article  Google Scholar 

  55. J.M. Ng, I. Gitlin, A.D. Stroock, and G.M. Whitesides, Electrophoresis 23, 3461 (2002)

    Article  Google Scholar 

  56. J.N. Lee, C. Park, and G.M. Whitesides, Anal. Chem. 75, 6544 (2003)

    Article  Google Scholar 

  57. S.K. Sia and G.M. Whitesides, Electrophoresis 24, 3563 (2003)

    Article  Google Scholar 

  58. D.T. Eddington, J.P. Puccinelli, and D.J. Beebe, Sens. Actuators, B Chem. 114, 170 (2006)

    Article  Google Scholar 

  59. M. Qin, L.K. Wang, X.Z. Feng, Y.L. Yang, R. Wang, C. Wang, L. Yu, B. Shao, and M.Q. Qiao, Langmuir 23, 4465 (2007)

    Article  Google Scholar 

  60. G. Sui, J. Wang, C.C. Lee, W. Lu, S.P. Lee, J.V. Leyton, A.M. Wu, and H.R. Tseng, Anal. Chem. 78, 5543 (2006)

    Article  Google Scholar 

  61. A.J. Wang, J.J. Xu, Q. Zhang, and H.Y. Chen, Talanta 69, 210 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengyi Zhang or Changxue Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahriar, M., Liu, J., Xu, H. et al. Effects of Corona Treatment on Cellular Attachment and Morphology on Polydimethylsiloxane Micropillar Substrates. JOM 74, 3408–3418 (2022). https://doi.org/10.1007/s11837-022-05378-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05378-x

Navigation