Skip to main content
Log in

An Efficient Process to Recover Iron from Bayer Red Mud

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

We have investigated Bayer red mud with a TFe content of 26.86% collected from the Pingguo area of China, and have found that iron is the key metal affecting the extraction of valuable components such as Sc, Ti, and Ga. Based on this, an efficient process of roasting with calcium salt and magnetic separation has been proposed to extract iron from the Bayer red mud. Coke, calcium chloride, and calcium hypochlorite were put into a resistance furnace for roasting, and iron was converted from low-intensity magnetic iron minerals to high-intensity magnetic iron minerals. Iron was recovered from the roasted ore by low-intensity magnetic separation after wet grinding. We found that calcium chloride and calcium hypochlorite can promote FeO to be reduced to Fe0 on the coke surface after FeCl3 is added, and that CaO produced by calcite decomposition can promote FeSiO3 to be reduced to Fe0, which significantly increases the content of metal iron in the roasted ore. An iron concentrate with a TFe content of 86.86% and an iron recovery of 91.48% was obtained. The main minerals in the iron concentrate were Fe0 and Fe3O4, which accounted for 58.78% and 20.37% of the total iron, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Khanna, Y. Konyukhov, D. Zinoveev, K. Jayasankar, I. Burmistrov, M. Kravchenko, and P.S. Mukherjee, Sustainability 14, 1258 https://doi.org/10.3390/su14031258 (2022).

    Article  Google Scholar 

  2. A.B. Botelho, D.C.R. Espinosa, J. Vaughan, and J.A.S. Tenorio, Miner. Eng. 172, 107148 https://doi.org/10.1016/j.mineng.2021.107148 (2021).

    Article  Google Scholar 

  3. S. Agrawal, and N. Dhawan, Miner Eng. 171, 107084 https://doi.org/10.1016/j.mineng.2021.107084 (2021).

    Article  Google Scholar 

  4. H.X. Zhao, F.S. Zhou, L.M.A. Evelina, J.L. Liu, and Y. Zhou, J. Hazard. Mater. 423, 127056 https://doi.org/10.1016/j.jhazmat.2021.127056 (2022).

    Article  Google Scholar 

  5. S. Eray, E. Keskinkilic, Y.A. Topkaya, and A. Geveci, JOM 74, 456 https://doi.org/10.1007/s11837-021-05076-0 (2022).

    Article  Google Scholar 

  6. W. Ding, J.H. Xiao, Y. Peng, S.Y. Shen, T. Chen, K. Zou, and Z. Wang, Miner. Process. Extr. Metall. Rev. 43, 61 https://doi.org/10.1080/08827508.2020.1833195 (2022).

    Article  Google Scholar 

  7. A.M. Ahamed, M.N. Pons, Q. Ricoux, F. Goettmann, and F. Lapicque, J. Environ. Manage. 266, 110547 https://doi.org/10.1016/j.jenvman.2020.110547 (2020).

    Article  Google Scholar 

  8. M. Archambo and S.K. Kawatra, Miner. Process. Extr. Metall. Rev. 42, 427 https://doi.org/10.1080/08827508.2020.1781109 (2021).

    Article  Google Scholar 

  9. H. Habibi, D. Pirouzan, S. Shakibania, Z. Pourkarimi, and M. Mokmeli, Environ. (Pollut. Res, Sci, 2022) https://doi.org/10.1007/s11356-022-20244-8.

    Book  Google Scholar 

  10. H.N. Gu, N. Wang, and J.S.J. Hargreaves, J. Sustain. Metall. 4, 147 https://doi.org/10.1007/s40831-018-0164-6 (2018).

    Article  Google Scholar 

  11. P. Wang and D.Y. Liu, Materials 10, 1800 https://doi.org/10.3390/ma5101800 (2012).

    Article  Google Scholar 

  12. W. Ding, S.X. Bao, Y.M. Zhang, and J.H. Xiao, Miner (Extr. Metall. Rev, Process, 2022) https://doi.org/10.1080/08827508.2022.2047044.

    Book  Google Scholar 

  13. J.H. Xiao, K. Zou, T. Chen, W.L. Xiong, and B. Deng, Metals 11, 563 https://doi.org/10.3390/met11040563 (2021).

    Article  Google Scholar 

  14. J.H. Xiao, W. Ding, Y. Peng, T. Chen, K. Zou, and Z. Wang, Minerals 10, 352 https://doi.org/10.3390/min10040352 (2020).

    Article  Google Scholar 

  15. W. Ding, J.H. Xiao, Y. Peng, S.Y. Shen, and T. Chen, Miner. Process. Extr. Metall. Rev. 42, 153 https://doi.org/10.1080/08827508.2019.1706049 (2020).

    Article  Google Scholar 

  16. S.H. Wang, H.X. Jin, Y. Deng, and Y.D. Xiao, J. Cleaner Prod. 289, 125136 https://doi.org/10.1016/j.jclepro.2020.125136 (2021).

    Article  Google Scholar 

  17. G.Y. Hu, H.H. Tang, D.D. He, W. Sun, and L. Wang, Miner. Eng. 173, 107180 https://doi.org/10.1016/j.mineng.2021.107180 (2021).

    Article  Google Scholar 

  18. X. Liu, P. Gao, S. Yuan, Y. Lv, and Y.X. Han, Miner. Eng. 157, 106553 https://doi.org/10.1016/j.mineng.2020.106553 (2020).

    Article  Google Scholar 

  19. B. Swain, A. Akcil, and J.C. Lee, Crit. Rev. Environ. Sci. Technol. 52, 520 https://doi.org/10.1080/10643389.2020.1829898 (2020).

    Article  Google Scholar 

  20. J.H. Xiao, K. Zou, T. Chen, Y. Peng, W. Ding, J.H. Chen, B. Deng, H. Li, and Z. Wang, JOM 73, 1836 https://doi.org/10.1007/s11837-021-04665-3 (2021).

    Article  Google Scholar 

  21. A.D. Salman, T. Juzsakova, A. Rdey, P.C. Le, X.C. Nguyen, E. Domokos, T.A. Abdullah, V. Vagvolgyi, S.W. Chang, and D.D. Nguyen, Chem. Eng. Technol. 44, 1768 https://doi.org/10.1002/ceat.202100223 (2021).

    Article  Google Scholar 

  22. J.H. Xiao, W. Ding, Y. Peng, Q. Wu, Z.Q. Chen, Z. Wang, J.M. Wang, and T.F. Peng, J. Min. Metall. Sect. B. 55, 305 https://doi.org/10.2298/JMMB180722032X (2019).

    Article  Google Scholar 

  23. S. Li, Z.S. Kang, W.C. Liu, Y.C. Lian, and H.S. Yang, J. Sustain. Metall. 7, 126 https://doi.org/10.1007/s40831-020-00326-y (2021).

    Article  Google Scholar 

  24. C.H. Borgert, L.R. Neto, F.F. Grillo, J.R. de Oliveira, J.L. Coleti, J.A.S. Tenorio, D.C.R. Espinosa, T.E.A. Frizon, M.V.G. Zimmermann, and E. Junca, JOM 74, 439 https://doi.org/10.1007/s11837-021-05075-1 (2022).

    Article  Google Scholar 

  25. J. Bud, Y. Mochizuki, and N. Tsubouchi, ISIJ Int. 62, 20. https://doi.org/10.2355/isijinternational.ISIJINT-2021-295 (2022).

    Article  Google Scholar 

  26. J.C. Dong, Y.G. Wei, S.W. Zhou, B. Li, Y.D. Yang, and A. Mclean, JOM 10, 2365 https://doi.org/10.1007/s11837-018-3032-8 (2018).

    Article  Google Scholar 

  27. P. Grudinsky, D. Zinoveev, A. Yurtaeva, A. Kondratiev, V. Dyubanov, and A. Petelin, J. Sustain. Metall. 67, 858 https://doi.org/10.1007/s40831-021-00400-z (2021).

    Article  Google Scholar 

  28. J.N. Pei, X.L. Pan, Y.M. Zhang, H.Y. Yu, and G.F. Tu, J. Environ. Chem. Eng. 9, 106754 https://doi.org/10.1016/j.jece.2021.106754 (2021).

    Article  Google Scholar 

  29. W.W. Wang and Z.Y. Li, Miner. Eng. 155, 106453 https://doi.org/10.1016/j.mineng.2020.106453 (2020).

    Article  Google Scholar 

  30. J.H. Xiao, W.L. Xiong, K. Zou, T. Chen, H. Li, and Z. Wang, J. Sustain. Metall. 7, 642 https://doi.org/10.1007/s40831-021-00364-0 (2021).

    Article  Google Scholar 

  31. S. Yuan, W.T. Zhou, Y.J. Li, and Y.X. Han, Trans. Nonferrous Met. Soc. China. 30, 812 https://doi.org/10.1016/S1003-6326(20)65256-6 (2020).

    Article  Google Scholar 

  32. S.W. Li, J. Pan, D.Q. Zhu, Z.Q. Guo, Y. Shi, T. Dong, S.H. Lu, and H.Y. Tian, Resour. Conserv. Recycl. 168, 105314 https://doi.org/10.1016/j.resconrec.2020.105314 (2021).

    Article  Google Scholar 

  33. A.P. He, J.M. Zeng, and S.H. Liu, J. Iron Steel Res. Int. 28(6), 661–668 https://doi.org/10.1007/s42243-020-00555-1 (2021).

    Article  Google Scholar 

  34. S. Shoppert, I. Loginova, J. Napol’skikh, A. Kyrchikov, L. Chaikin, D. Rogozhnikov, and D. Valeev, Materials 15, 433 https://doi.org/10.3390/ma15020433 (2022).

    Article  Google Scholar 

  35. P. Kannan, F. Banat, S.W. Hasan, and M. Abu Haija, Hydrometallurgy 206, 105758 https://doi.org/10.1016/j.hydromet.2021.105758 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Sichuan Science and Technology Program (Grant Nos. 2022YFS0462, 2021YJ0057, and 2021YFG0268), the Project funded by China Postdoctoral Science Foundation (Grant No. 2014M560734), and Key Laboratory of Guangdong Provincial Key Laboratory of Radioactive and Rare Resource Utilization (Grant No. 2018B030322009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhui Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could influence the work reported in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 301 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Zhong, N., Gao, D. et al. An Efficient Process to Recover Iron from Bayer Red Mud. JOM 74, 3172–3180 (2022). https://doi.org/10.1007/s11837-022-05373-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05373-2

Navigation