Skip to main content
Log in

Removal and Recovery of Arsenic(III) from Hydrochloric Acid Leach Liquor of Tungsten Slag by Solvent Extraction with 2-Ethylhexanol

  • Progress on Recovery of Critical Raw Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Arsenic(III) removal and recovery from hydrochloric acid leach liquor of tungsten slag were systematically investigated by solvent extraction with 2-ethylhexanol. Because the iron in leach liquor could also be extracted by 2-ethylhexanol, the effects of various conditions on arsenic(III) and iron extraction were investigated and the optimum conditions were determined. Single extraction efficiency of 84.9% for arsenic(III) was achieved under the optimal conditions (10%(v/v) 2-ethylhexanol, 3.25 mol/L H+, 5.91 mol/L Cl, O/A = 2, 303.15 K, 5 min). After two-stage countercurrent extraction, the extraction efficiency of arsenic(III) was 97.3% with only 0.75% of iron co-extracted. Using 1.0 mol/L of hydrochloric acid as stripping reagent, 97.4% of arsenic(III) was stripped at O/A ratio of 2 by single stage. Furthermore, the possible extraction mechanism of arsenic with 2-ethylhexanol was investigated via combining experimental results and FT-IR analysis, and the structure of the extracted complex was determined to be HAs(OH)2Cl2·ROH. The results of this study propose a potential application process for arsenic removal and recovery from hydrochloric acid system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Ma, C. Qi, L. Ye, D. Yang, and J. Hong, J. Clean. Prod. 149, 936 https://doi.org/10.1016/j.jclepro.2017.02.184 (2017).

    Article  Google Scholar 

  2. C. Liao, S. Xie, X. Wang, B. Zhao, B. Cai, and L. Wang, Jom 73, 1853 https://doi.org/10.1007/s11837-021-04671-5 (2021).

    Article  Google Scholar 

  3. H. Liu, H. Liu, C. Nie, J. Zhang, B.M. Steenari, and C. Ekberg, J Environ Manage 270, 110927 https://doi.org/10.1016/j.jenvman.2020.110927 (2020).

    Article  Google Scholar 

  4. L. Junjie, H. Dewn, Z. Kanggen, and G. Dandan, Conserv. Utiliz. of Mineral Res. 39, 125 (2019).

    Google Scholar 

  5. Y. Xu, Z. Deng, W. Li, and T. Yu, Jiangxi Nonferr. Met. 11, 32 (1997).

    Google Scholar 

  6. H. Nie, Y. Wang, Y. Wang, Z. Zhao, Y. Dong and X. Sun, Hydrometallurgy 175, 117–123 https://doi.org/10.1016/j.hydromet.2017.10.026 (2018).

  7. W. Zhang, T.-A. Zhang, G. Lv, W. Zhou, X. Cao, and H. Zhu, JOM 70, 2837–2845 https://doi.org/10.1007/s11837-018-3166-8 (2018).

    Article  Google Scholar 

  8. L. Zeng, T. Yang, X. Yi, P. Chen, J. Liu, and G. Huo, Hydrometallurgy. https://doi.org/10.1016/j.hydromet.2020.105500 (2020).

    Article  Google Scholar 

  9. Y. Li, S. Lv, N. Fu, and Z. Zhao, JOM 72, 373 https://doi.org/10.1007/s11837-019-03676-5 (2020).

    Article  Google Scholar 

  10. H. Fu, Y. Li, G. Cao, and Z. Zhao, JOM 70, 2864 https://doi.org/10.1007/s11837-018-3167-7 (2018).

    Article  Google Scholar 

  11. G. Huo, L. Guo, X. Yi, H. Pu, H. Liu, S. Ma and L. Zeng, “Treatment method of decomposition tin containing slag” (soopat). http://www1.soopat.com/Patent/CN106180138A (2019).

  12. S. Alka, S. Shahir, N. Ibrahim, M.J. Ndejiko, D.-V.N. Vo, and F.A. Manan, J. Cleaner Prod. https://doi.org/10.1016/j.jclepro.2020.123805 (2021).

    Article  Google Scholar 

  13. T. Zeng, Z. Deng, F. Zhang, G. Fan, C. Wei, X. Li, M. Li, and H. Liu, Hydrometallurgy. https://doi.org/10.1016/j.hydromet.2021.105562 (2021).

    Article  Google Scholar 

  14. F.L. Pantuzzo and V.S. Ciminelli, Water Res 44, 5631 https://doi.org/10.1016/j.watres.2010.07.011 (2010).

    Article  Google Scholar 

  15. "USGS, 2018. Interior releases 2018 ’ s final list of 35 minerals deemed critical to U. S. National security and the economy" (Office of Communications and Publishing, 2018), https://www.usgs.gov/news/national-news-release/interior-releases-2018s-final-list-35-minerals-deemed-critical-us.

  16. L.S. Martins, L.F. Guimarães, A.B.B. Junior, J.A.S. Tenório, and D.C.R. Espinosa, J. Environ. Manage. 295, 113091 (2021).

    Article  Google Scholar 

  17. P. Cao, H. Long, M. Zhang, and Y. Zheng, Chem Eng. https://doi.org/10.1016/j.jece.2021.105871 (2021).

    Article  Google Scholar 

  18. N. Jantunen, S. Virolainen, P. Latostenmaa, J. Salminen, M. Haapalainen, and T. Sainio, Hydrometallurgy 187, 101 https://doi.org/10.1016/j.hydromet.2019.05.008 (2019).

    Article  Google Scholar 

  19. A. Demirkiran and N.M. Rice, ISEC, 892-895 (2002).

  20. P. Navarro and F.J. Alguacil, Can. Metall. Q. 35, 133–141 (1996).

    Article  Google Scholar 

  21. V.F. Travkin, Y.M. Glubokov, E.V. Mironova, and V.V. Yakshin, Sorption and Ion-Exchange Processes 74, 1614–1617 (2001).

    Google Scholar 

  22. L. Iberhan and M. Wisniewski, J. Chem. Technol. Biotechnol. 78, 659–665 https://doi.org/10.1002/jctb.843 (2003).

    Article  Google Scholar 

  23. B. MB, W. M, S. J (1998) Journal of Radioanalytical and Nuclear Chemistry, 228, 57–61

  24. A. Baradel, R. Guerriero, L. Meregalli, and I. Vittadini, JOM 38, 32–37 https://doi.org/10.1007/BF03257918 (1986).

    Article  Google Scholar 

  25. M.A.D.L. Ballinas, E.R.g.d.S. Miguel, M.a. Mun˜oz and J.d. Gyves, Ind. Eng. Chem. Res. , 42, 574-580 (2003).

  26. B. Gupta and Z. Begum, Sep. Purif. Technol. 63, 77–85 (2008).

    Article  Google Scholar 

  27. L. Pinying and Y. Zhoulan, J.CENT.-South Inst.Min.Metall, 21, 673-678 (1990).

  28. K.A. Orlandini, M.A. Wahlgren, and J. Barclay, Anal. Chem. 37, 1148–1151 (1965).

    Article  Google Scholar 

  29. B.R. Reddy and P.V.R.B. Sarma, Hydrometallurgy 43, 299 (1996).

    Article  Google Scholar 

  30. M.S. Lee, G.-S. Lee, and K.Y. Sohn, Mater. Trans. 45, 1859 (2004).

    Article  Google Scholar 

  31. X. Yi, G. Huo, and W. Tang, Hydrometallurgy. https://doi.org/10.1016/j.hydromet.2020.105265 (2020).

    Article  Google Scholar 

  32. C. Sella, R.N. Mendoza, and D. Bauer, Hydrometallurgy 27, 179–190 (1991).

    Article  Google Scholar 

  33. G.M. Arcand, J. Am. Chem. Soc. 76, 1865–1870 (1957).

    Article  Google Scholar 

  34. R.J. Ma, Yunnan Metallurgy (In Chinese) 6, 40–46 (1982).

    Google Scholar 

  35. Y. Marcus, Coordin. Chem. Rev. 2, 195–238 https://doi.org/10.1016/S0010-8545(00)80205-2 (1967).

    Article  Google Scholar 

  36. R. Zhang, Y. Xie, J. Song, L. Xing, D. Kong, X.-M. Li, and T. He, Hydrometallurgy 160, 129 https://doi.org/10.1016/j.hydromet.2016.01.001 (2016).

    Article  Google Scholar 

  37. X. Zhou, Z. Zhang, S. Kuang, Y. Li, Y. Ma, Y. Li, and W. Liao, Hydrometallurgy 185, 76 https://doi.org/10.1016/j.hydromet.2019.02.001 (2019).

    Article  Google Scholar 

  38. W. Le, S. Kuang, Z. Zhang, G. Wu, Y. Li, C. Liao, and W. Liao, Hydrometallurgy 178, 54 https://doi.org/10.1016/j.hydromet.2018.04.005 (2018).

    Article  Google Scholar 

  39. S. Kuang, Z. Zhang, Y. Li, H. Wei, and W. Liao, J. Rare Earths 36, 304 https://doi.org/10.1016/j.jre.2017.09.007 (2018).

    Article  Google Scholar 

  40. M.B. Shakoor, N.K. Niazi, I. Bibi, M. Shahid, Z.A. Saqib, M.F. Nawaz, S.M. Shaheen, H. Wang, D.C.W. Tsang, J. Bundschuh, Y.S. Ok, and J. Rinklebe, Environ Int 123, 567 https://doi.org/10.1016/j.envint.2018.12.049 (2019).

    Article  Google Scholar 

  41. Z. Zhou, Y.-G. Liu, S.-B. Liu, H.-Y. Liu, G.-M. Zeng, X.-F. Tan, C.-P. Yang, Y. Ding, Z.-L. Yan, and X.-X. Cai, Chem. Eng. J. 314, 223 https://doi.org/10.1016/j.cej.2016.12.113 (2017).

    Article  Google Scholar 

  42. V.S. Kislik, Solvent extraction: classical and novel approaches, (Elsevier, 2012).

Download references

Acknowledgements

The authors are thankful to the National Key Research and Development Program of China (2019YFC1907400) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangsheng Huo.

Ethics declarations

Conflicts of interest

The authors declared that they have no conflicts of interest related to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, L., Yang, T., Guo, L. et al. Removal and Recovery of Arsenic(III) from Hydrochloric Acid Leach Liquor of Tungsten Slag by Solvent Extraction with 2-Ethylhexanol. JOM 74, 3021–3029 (2022). https://doi.org/10.1007/s11837-022-05369-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05369-y

Navigation