Skip to main content
Log in

Influence of Iron Oxides on Red Mud Based Ceramic Tiles

  • Health, Safety and Environmental Sustainability in Aluminum Recover
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Red mud based ceramic tiles were successfully fabricated by high-temperature sintering and the influence of the Fe2O3 content on their comprehensive performance, mineral phase, and microstructure were systematically investigated. The results indicate that iron is involved in the structural reorganization of mullite during the nucleating process. Adding 9% Fe2O3 elongated mullite crystals to an aspect ratio of 15.6 ± 2.1, and the crystals were successfully obtained at a sintering temperature of 1300°C for 2 h. In this case, the values for water absorption and compressive strength of the red mud based ceramics were 6.6% and 178.3 MPa, respectively, reaching the national standard for building materials. Putting the right amount of Fe2O3 into ceramics can not only promote the anisotropic growth of mullite crystals but can result in the formation of an interlocked network of mullite at lower temperatures. This work will contribute to a better understanding of the influence of Fe2O3 on basic material performance, such as structural, micro-analysis, and mechanical characteristics of ceramic tiles with iron-containing mullites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W. Liu, J. Yang, and X. Bo, J. Hazard. Mater. 161, 474 (2009)

    Article  Google Scholar 

  2. W. Wang, W. Chen, and H. Liu, Ceram. Int. 45, 9852 (2019)

    Article  Google Scholar 

  3. Z. Li, Y. Dong, S. Hampshire, S. Cerneaux, and L. Winnubst, J. Eur. Ceram. Soc. 35, 711 (2015)

    Article  Google Scholar 

  4. N.I. Bento, P.S.C. Santos, T.E.D. Souza, L.C.A. Oliveira, and C.S. Castro, J. Hazard. Mater. 314, 304 (2016)

    Article  Google Scholar 

  5. S. Alam, S.K. Das, and B.H. Rao, Constr. Build. Mater. 211, 932 (2019)

    Article  Google Scholar 

  6. D.-W. Cho, K. Yoon, Y. Ahn, Y. Sun, D.C.W. Tsang, and D.I. Hou, J. Hazard. Mater. 374, 412 (2019)

    Article  Google Scholar 

  7. H. He, Q. Yue, S. Yuan, B. Gao, G. Yue, and J. Wang, J. Hazard. Mater. 203, 53 (2012)

    Article  Google Scholar 

  8. M.N. Rui, J. Carvalheiras, M.P. Seabra, R.C. Pullar, and J.A. Labrincha, J. Hazard. Mater. 358, 69 (2018)

    Article  Google Scholar 

  9. F. Ferraz, Constr. Build. Mater. 229, 116860 (2019)

    Article  Google Scholar 

  10. S. Liu, X. Guan, S. Zhang, Z. Dou, C. Feng, and H. Zhang, Ceram. Int. 43, 13004 (2017)

    Article  Google Scholar 

  11. H. Ye, Y. Li, and J. Sun, Ceram. Int. 45, 12934 (2019)

    Article  Google Scholar 

  12. J. Cao, X. Dong, L. Li, Y. Dong, and S. Hampshire, J. Eur. Ceram. Soc. 34, 3181 (2014)

    Article  Google Scholar 

  13. K. Hua, X. Xi, L. Xu, K. Zhao, J. Wu, and A. Shui, Ceram. Int. 42, 17179 (2016)

    Article  Google Scholar 

  14. L.B. Kong, Y.B. Gan, J. Ma, T.S. Zhang, F. Boey, and R.F. Zhang, J Alloys Compd. 351, 264 (2003)

    Article  Google Scholar 

  15. S. Li, H. Du, A. Guo, X. Hai, and D. Yang, Ceram. Int. 38, 1027 (2012)

    Article  Google Scholar 

  16. T. Sahraoui, H. Belhouchet, M. Heraiz, N. Brihi, and A. Guermat, Ceram. Int. 42, 12185 (2016)

    Article  Google Scholar 

  17. N. Soro, L. Aldon, J. Olivier-Fourcade, J.C. Jumas, and P. Blanchart, J. Am. Ceram. Soc. 86, 129 (2010)

    Article  Google Scholar 

  18. Q. Zhou, T. Long, J. He, J. Guo, and J. Gao, J. Taiwan. Inst Chem E. 106, 92 (2019)

    Article  Google Scholar 

  19. S. Ili, V.N. Ivanovski, E. Radovanovi, A. Egelja, and B. Matovi, Mater. Sci. Eng. B. 256, 114543 (2020)

    Article  Google Scholar 

  20. A. Guo, J. Liu, R. Xu, H. Xu, and C. Wang, Fuel 89, 3630 (2010)

    Article  Google Scholar 

  21. M. Zhang, C. Han, K. Ni, H. Gu, A. Huang, and C. Yu, Ceram. Int. 44, 5945 (2017)

    Article  Google Scholar 

  22. M. Xie, X. Wu, J. Liu, and Z. Kai, Ceram. Int. 43, 9896 (2017)

    Article  Google Scholar 

  23. D. Li, X. Yao, J. Chen, F. Jiang, Y. Yang, and Z. Huang, Mater. Sci. Eng. A. 559, 510 (2013)

    Article  Google Scholar 

  24. H. Guo, and W. Li, J. Eur. Ceram. Soc. 38, 679 (2018)

    Article  Google Scholar 

  25. H. Schneider, X. Reinhard, and F. Jürgen, J. Am. Ceram. Soc. 98, 2948 (2015)

    Article  Google Scholar 

  26. S. Ilic, S. Zec, M. Miljkovic, D. Poleti, M. Posarac-Markovic, and D. Janackovic, J. Alloys Compd. 612, 259 (2014)

    Article  Google Scholar 

Download references

Acknowledgement

Financial support was received from the Natural Science Foundation of Henan Province [Grant Number 222300420437].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zhang, Z. & Wang, W. Influence of Iron Oxides on Red Mud Based Ceramic Tiles. JOM 74, 3232–3238 (2022). https://doi.org/10.1007/s11837-022-05346-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05346-5

Navigation