Skip to main content
Log in

Influence of Oxygen Content on the Microstructure and Mechanical Properties of Hot Isostatically Pressed 30CrMnSiNi2A Ultra-High Strength Steel

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Oxide inclusions introduced by oxygen on the raw powder surface play an important role in the material performance of powder metallurgy products. In this study, we report the effect of oxygen content in the powder on the microstructure and mechanical properties of hot isostatically pressed (HIPed) 30CrMnSiNi2A ultra-high strength steel (UHSS). The results indicate that, when there is more oxygen in—powder, the size of the oxide inclusions increases, and the prior particle boundaries (PPBs) become clearly visible. In addition, the main constituents of—inclusions in—PPBs changes from Al-rich oxide to Si-rich oxide. When the oxygen content increases from 200 ppm to 650 ppm, the tensile strength maintains a value about 1300 MPa, while with further increases in the oxygen content to 1700 ppm, it decreases to 1200 MPa. The impact toughness of steel is sensitive to the oxygen content in the powder, and it deteriorates as the oxygen content goes above 365 ppm. Our findings not only clarify the influence of the oxygen content in raw powders on the mechanical properties of HIPed UHSS but also shed light on the formation mechanism of PPBs and their evolution, such as oxide size, morphology, species, etc., during sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Wang, D. Wen, J. Li, Z. Zheng, and Y. Xiong, Mater. Today. Commun. 26, 102009 (2021).

    Article  Google Scholar 

  2. Y. Duan, W. Liu, Y. Ma, Q. Cai, W. Zhu, and J. Li, J. Mater. Res. Technol. 9, 15192 (2020).

    Article  Google Scholar 

  3. H.V. Atkinson and S. Davies, Metall. Mater. Trans. A 31, 2981 (2000).

    Article  Google Scholar 

  4. W.X. Yuan, J. Mei, V. Samarov, D. Seliverstov, and X. Wu, J. Mater. Process. Technol. 182, 39 (2007).

    Article  Google Scholar 

  5. K. Kallip, N.K. Babu, K.A. AlOgab, L. Kollo, X. Maeder, Y. Arroyo, and M. Leparoux, J. Alloys Compd. 714, 133 (2017).

    Article  Google Scholar 

  6. S. Irukuvarghula, H. Hassanin, C. Cayron, M.M. Attallah, D. Stewart, and M. Preuss, Acta Mater. 133, 269 (2017).

    Article  Google Scholar 

  7. C.L. Qiu, M.M. Attallah, X.H. Wu, and P. Andrews, Mater. Sci. Eng. A 564, 176 (2013).

    Article  Google Scholar 

  8. J.E. MacDonald, R.H.U. Khan, M. Aristizabal, K.E.A. Essa, M.J. Lunt, and M.M. Attallah, Mater. Design 174, 107796 (2019).

    Article  Google Scholar 

  9. Q. Teng, Q. Wei, P. Xue, C. Cai, H. Chen, H. Chen, and Y. Shi, Mater. Sci. Eng. A 739, 118 (2019).

    Article  Google Scholar 

  10. M. Higashi and N. Kanno, Mater. Design 194, 108926 (2020).

    Article  Google Scholar 

  11. G.A. Rao, M. Srinivas, and D.S. Sarma, Mater. Sci. Eng. A 435, 84 (2006).

    Article  Google Scholar 

  12. A. Sergi, R.H.U. Khan, and M.M. Attallah, Mater. Sci. Eng. A 808, 140950 (2021).

    Article  Google Scholar 

  13. S. Irukuvarghula, H. Hassanin, C. Cayron, M. Aristizabal, M.M. Attallah, and M. Preuss, Acta Mater. 172, 6 (2019).

    Article  Google Scholar 

  14. W. Ding, Z. Wang, G. Chen, W. Cai, C. Zhang, Q. Tao, X. Qu, and M. Qin, Corros. Sci. 178, 109080 (2021).

    Article  Google Scholar 

  15. K. Zumsande, A. Weddeling, E. Hryha, S. Huth, L. Nyborg, S. Weber, N. Krasokha, and W. Theisen, Mater. Charact. 71, 66 (2012).

    Article  Google Scholar 

  16. T. Yamashita and P. Hayes, Appl. Surf. Sci. 254, 2441 (2008).

    Article  Google Scholar 

  17. I. Olefjord and L. Nyborg, Powder Metall. 28, 237 (1985).

    Article  Google Scholar 

  18. G. Hultquist and C. Leygraf, Corros. Sci. 22, 331 (1982).

    Article  Google Scholar 

  19. E. Gil, J. Cortés, I. Iturriza, and N. Ordás, Appl. Surf. Sci. 427, 182 (2018).

    Article  Google Scholar 

  20. D.H. Shim, T. Lee, J. Lee, H.J. Lee, J.Y. Yoo, and C.S. Lee, Mater. Sci. Eng. A 700, 473 (2017).

    Article  Google Scholar 

  21. Z.X. Qiao, Y.C. Liu, L.M. Yu, and Z.M. Gao, J. Alloys Compd. 475, 560 (2009).

    Article  Google Scholar 

  22. Y. Zhou, T. Jia, X. Zhang, Z. Liu, and R.D.K. Misra, Mater. Sci. Eng. A 626, 352 (2015).

    Article  Google Scholar 

  23. D. Chasoglou, E. Hryha, and L. Nyborg, Mater. Chem. Phys. 138, 405 (2013).

    Article  Google Scholar 

  24. A. Pineau, A.A. Benzerga, and T. Pardoen, Acta Mater. 107, 424 (2016).

    Article  Google Scholar 

  25. X. He, M. Wang, C. Hu, and L. Xu, Mater. Sci. Eng. A 827, 141999 (2021).

    Article  Google Scholar 

  26. D.R. Eo, S.H. Park, and J.W. Cho, Addit. Manuf. 33, 101119 (2020).

    Google Scholar 

  27. A.J. Cooper, W.J. Brayshaw, and A.H. Sherry, Metall. Mater. Trans. A 49, 1579 (2018).

    Article  Google Scholar 

  28. A.J. Cooper, N.I. Cooper, J. Dhers, and A.H. Sherry, Metall. Mater. Trans. A 47, 4467 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51701242, 51931012), and the Natural Science Foundation of Hunan Province of China (Grant No. 2018JJ3648).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingshan Cai or Chaoping Liang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 306 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Ma, Y., Cai, Q. et al. Influence of Oxygen Content on the Microstructure and Mechanical Properties of Hot Isostatically Pressed 30CrMnSiNi2A Ultra-High Strength Steel. JOM 74, 3595–3606 (2022). https://doi.org/10.1007/s11837-022-05336-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05336-7

Navigation