Skip to main content
Log in

Unraveling the Chloride Penetration Dissolution Mechanism of High-Grade Nickel Matte During Anodic Oxidation

  • Properties and Evolution of Defects and Interfaces
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The beneficial effect of chloride on the leaching of nickel matte by sulfuric acid has been found in hydrometallurgy, but its mechanism has not been properly revealed. This investigation focuses on the analysis of the reaction process of electrochemical oxidation leaching of high-grade nickel matte in HCl solution. According to the condition of potentiostatic polarization, the reactions took place in four stages to obtain different interface reaction products, and the dissolution mechanism has been proposed according to the characterization results. The results showed that the product layer became cracks and porous due to the penetration effect of chloride in the interfacial reaction, which greatly increases the surface area of the interfacial product layer. This makes the interface reaction more likely to occur, thus improving the leaching effect. Accompanied by the dissolution of nickel and copper ions from the high-grade nickel matte, and the sulfur element, which is combined with the metal ions, is oxidized by potentiostatic polarization to form a monosulfide/disulphide (0.2–0.8 V), polysulfide/elemental sulfur (0.8–1.0 V), and thiosulphate/sulfate (1.0–1.2 V). These can provide some constructive guidance for optimizing the existing nickel matte leaching process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Geng, G. Li, Y. Zhao, H. Chen, Y. Lu, X. Lu, and Q. Xu, Trans. Nonferr. Metal. Soc. 29, 2202 (2019).

    Article  Google Scholar 

  2. K. Park, D. Mohapatra, B.R. Reddy, and C. Nam, Hydrometallurgy 86, 164 (2007).

    Article  Google Scholar 

  3. M. Maley, W. van Bronswijk, and H.R. Watling, Hydrometallurgy 98, 73 (2009).

    Article  Google Scholar 

  4. T. Xiao, W. Mu, S. Shi, H. Xin, X. Xu, H. Cheng, S. Luo, and Y. Zhai, Miner. Eng. 174, 107254 (2021).

    Article  Google Scholar 

  5. C. Zhu, Y. Lei, X. Hu, Q. Xu, X. Zou, H. Cheng, and X. Lu, Minerals 11(11), 1219 (2021).

    Article  Google Scholar 

  6. A.O. Filmer, and M.J. Nicol, J. South. Afr. Inst. Min. Metall. 11, 415 (1980).

    Google Scholar 

  7. G. Li, X. Xiong, L. Wang, L. Che, L. Wei, H. Cheng, X. Zou, Q. Xu, Z. Zhou, S. Li, and X. Lu, Metals 9, 1256 (2019).

    Article  Google Scholar 

  8. W. Tao, C. Zhu, Q. Xu, S. Li, X. Xiong, H. Cheng, X. Zou, and X. Lu, ACS Omega 5, 20090 (2020).

    Article  Google Scholar 

  9. Q. Sun, H. Chen, X. Mei, Y. Liu, G. Li, Q. Xu, and X. Lu, Sci. Rep. 10, 9916 (2020).

    Article  Google Scholar 

  10. C. Xu, H. Chen, G. Li, C. Lu, X. Lu, X. Zou, and Q. Xu, Int. J. Min. Met. Mater. 24, 377 (2017).

    Article  Google Scholar 

  11. N.P. Finkelstein, Int. J. Miner. Process. 52, 81 (1997).

    Article  Google Scholar 

  12. K. Park, D. Mohapatra, K. Hong-In, and X. Guo, Sep. Purif. Technol. 56, 303 (2007).

    Article  Google Scholar 

  13. E. Ghali, D.V. Subrahmanyam, J. Legault, and R. Tremblay, Surf. Technol. 8, 195 (1979).

    Article  Google Scholar 

  14. J.A.M. Rademan, L. Lorenzen, and J.S.J. van Deventer, Hydrometallurgy 52, 231 (1999).

    Article  Google Scholar 

  15. R.R. Moskalyk, and A.M. Alfantazi, Min. Proc. Ext. Met. Rev. 23, 141 (2002).

    Article  Google Scholar 

  16. M.H. Morcali, L.T. Khajavi, S. Aktas, and D.B. Dreisinger, Hydrometallurgy 185, 257 (2019).

    Article  Google Scholar 

  17. S. Geng, H. Dong, Y. Lu, S. Wang, Y. Huang, X. Zou, Y. Zhang, Q. Xu, and X. Lu, Sep. Purif. Technol. 242, 116779 (2020).

    Article  Google Scholar 

  18. S. Rao, X. Zou, S. Wang, Y. Lu, T. Shi, H. Hsu, Q. Xu, and X. Lu, Mater. Chem. Phys. 232, 6 (2019).

    Article  Google Scholar 

  19. J. Li, T. Wang, Z. Sun, J. Wu, D. Shen, Q. Yuan, X. Li, and J. Chen, Sep. Purif. Technol. 199, 282 (2018).

    Article  Google Scholar 

  20. D.M. Muir, and E. Ho, Min. Proc. Ext. Met. Rev. 115, 57 (2006).

    Google Scholar 

  21. E.N. Selivanov, O.V. Nechvoglod, S.V. Mamyachenkov, and V.A. Sergeev, Russ. J. Non-ferr. Met. 51, 101 (2010).

    Article  Google Scholar 

  22. J. Aromaa, Physicochem. Probl. Miner. Process. 46, 51 (2011).

    Google Scholar 

  23. Y. Niu, F. Sun, Y. Xu, Z. Cong, and E. Wang, Talanta 127, 211 (2014).

    Article  Google Scholar 

  24. X. Niu, R. Ruan, Q. Tan, Y. Jia, and H. Sun, Hydrometallurgy 155, 141 (2015).

    Article  Google Scholar 

  25. B. Yan, D. Krishnamurthy, C.H. Hendon, S. Deshpande, Y. Surendranath, and V. Viswanathan, Joule 1, 600 (2017).

    Article  Google Scholar 

  26. A. Sandstrom, A. Shchukarev, and J. Paul, Miner. Eng. 18, 505 (2005).

    Article  Google Scholar 

  27. Y. Bao, G. Xu, X. Tian, P. Xu, and J. Ma, Sep. Purif. Technol. 200, 242 (2018).

    Article  Google Scholar 

  28. S. Wang, X. Xiong, X. Zou, K. Ding, Z. Pang, Q. Xu, Z. Zhou, and X. Lu, J. Mater. Chem. A 8, 4354 (2020).

    Article  Google Scholar 

  29. G. Qian, Y. Li, and A.R. Gerson, Surf. Sci. Rep. 70, 86 (2015).

    Article  Google Scholar 

  30. X. Tao, F. Liu, Z. Bai, D. Wei, X. Zhang, J. Wang, J. Gao, X. Sun, B. Li, C. Li, and A. Li, J. Environ. Sci. 48, 34 (2016).

    Article  Google Scholar 

  31. H.R. Watling, Hydrometallurgy 140, 163 (2013).

    Article  Google Scholar 

  32. L. Lai, X. Fu, R. Sun, and R. Du, Surf. Coat. Tech. 235, 552 (2013).

    Article  Google Scholar 

  33. R. Winand, Hydrometallurgy 27, 285 (1991).

    Article  Google Scholar 

  34. G. Senanayake, Hydrometallurgy 98, 21 (2009).

    Article  Google Scholar 

  35. J. Chen, Y. Lei, C. Zhu, C. Sun, Q. Xu, H. Cheng, X. Zou, and X. Lu, Hydrometallurgy 210, 105847 (2022).

    Article  Google Scholar 

  36. C. Zhu, J. Chen, W. Tao, Q. Xu, X. Zou, H. Cheng, and X. Lu, JCIS Open 3, 100019 (2021).

    Article  Google Scholar 

  37. R.P. Plasket, and S. Romanchuk, Hydrometallurgy 3, 135 (1978).

    Article  Google Scholar 

  38. G. Senanayake and D. M. Muir, Chloride processing of metal sulphides: review of fundamentals and applications. in Young, C. A., et al. (Ed.) Proc. Hydrometallurgy. TMS, Warrendale, pp. 517-531 (2003).

  39. M.I. Natorkhin, Russ. J. Appl. Chem. 74, 48 (2001).

    Article  Google Scholar 

  40. M.I. Natorkhin, Russ. J. Appl. Chem. 74, 50 (2001).

    Google Scholar 

  41. E. N. Selivanov, O. V. Nechvoglod and V. G. Lobanov, The effect of the nickel sulphide alloys structure on their electrochemical oxidation parameters, 16th IFAC Symp. Auto. Min., Miner. Met. Process. August 25-28 (2013).

  42. E.S. Kshumaneva, A.G. Kasikov, Yu.N. Neradovskii, and V.Y. Kuznetsov, Russ. J. Appl. Chem. 82, 772 (2009).

    Article  Google Scholar 

  43. J. Castillo, R. Sepúlveda, G. Araya, D. Guzmán, N. Toro, K. Pérez, M. Rodríguez, and A. Navarra, Minerals 9, 319 (2019).

    Article  Google Scholar 

  44. Y. Zhang, W. Li, Y. Cai, Y. Qu, Y. Pan, W. Zhang, and K. Zhao, Geochim. Cosmochim. Acta 298, 1 (2021).

    Article  Google Scholar 

  45. G.K. Parker, R. Woods, and G.A. Hope, Colloid. Surf. A: Physicochem. Eng. Aspects 318, 160 (2008).

    Article  Google Scholar 

  46. A. Adamou, A. Nicolaides, and C. Varotsis, Miner. Eng. 132, 39 (2019).

    Article  Google Scholar 

  47. T. Hurma, and S. Kose, Optik 127, 6000 (2016).

    Article  Google Scholar 

  48. C. Schmidt, A. Watenphul, S. Jahn, I. Schäpan, L. Scholten, M.G. Newville, and A. Lanzirotti, Chem. Geol. 494, 69 (2018).

    Article  Google Scholar 

  49. C.G. Munce, G.K. Parker, S.A. Holt, and G.A. Hope, Colloid. Surf. A: Physicochem. Eng. Aspects 295, 152 (2007).

    Article  Google Scholar 

  50. D.W. Bishop, P.S. Thomas, and A.S. Ray, Mater. Res. Bull. 33, 1303 (1998).

    Article  Google Scholar 

  51. T.P. Mernagh, and A.G. Trudu, Chem. Geol. 103, 113 (1993).

    Article  Google Scholar 

  52. D.W. Bishop, P.S. Thomas, and A.S. Ray, Mater. Res. Bull. 35, 1123 (2000).

    Article  Google Scholar 

  53. P.R. Holmes, and F.K. Crundwell, Hydrometallurgy 139, 101 (2013).

    Article  Google Scholar 

  54. B. Minceva-Sukarova, M. Najdoski, I. Grozdanov, and C.J. Chunnilall, J. Mol. Struct. 410, 267 (1997).

    Google Scholar 

  55. Z. Cheng, H. Abernathy, and M. Liu, J. Phys. Chem. C 111, 17997 (2007).

    Article  Google Scholar 

  56. P.L. Tam, and L. Nyborg, Surf. Coat. Tech. 203, 2886 (2009).

    Article  Google Scholar 

  57. P. Velasquez, D. Leinen, J. Pascual, J.R. Ramos-Barrado, P. Grez, H. Gomez, R. Schrebler, R.D. Rio, and R. Cordova, J. Phys. Chem. B 109, 4977 (2005).

    Article  Google Scholar 

  58. A. Parker, C. Klauber, A. Kougianos, H.R. Watling, and W. van Bronswijk, Hydrometallurgy 71, 265 (2003).

    Article  Google Scholar 

  59. X. Hua, Y. Zheng, Q. Xu, X. Lu, H. Cheng, X. Zou, Q. Song, and Z. Ning, Trans. Nonferr. Metal. Soc. 28, 556 (2018).

    Article  Google Scholar 

  60. M. Khoshkhoo, M. Dopson, A. Shchukarev, and Å. Sandström, Hydrometallurgy 149, 220 (2014).

    Article  Google Scholar 

  61. J. Wang, X. Gan, H. Zhao, M. Hu, K. Li, W. Qin, and G. Qiu, Miner. Eng. 98, 264 (2016).

    Article  Google Scholar 

  62. X. Hua, Y. Zheng, Q. Xu, X. Lu, H. Cheng, X. Zou, Q. Song, Z. Ning, and M.L. Free, J. Electrochem. Soc. 165, E466 (2018).

    Article  Google Scholar 

  63. A. Ghahremaninezhad, D.G. Dixon, and E. Asselin, Electrochim. Acta 87, 97 (2013).

    Article  Google Scholar 

  64. S. Wang, X. Zou, T. Shi, K. Ding, Z. Pang, Y. Huang, W. Tang, Q. Xu, Z. Zhou, and X. Lu, Appl. Surf. Sci. 498, 143768 (2019).

    Article  Google Scholar 

  65. X. Xiong, X. Hua, Y. Zheng, X. Lu, S. Li, H. Cheng, and Q. Xu, Appl. Surf. Sci. 427, 233 (2018).

    Article  Google Scholar 

  66. M.C. Biesinger, B.R. Hart, R. Polack, B.A. Kobe, and R.S.C. Smart, Miner. Eng. 20, 152 (2007).

    Article  Google Scholar 

  67. M.C. Biesinger, L.W.M. Lau, A.R. Gerson, and R.S.C. Smart, Appl. Surf. Sci. 257, 887 (2010).

    Article  Google Scholar 

  68. I.V. Chernyshova, and S.I. Andreev, Appl. Surf. Sci. 108, 235 (1997).

    Article  Google Scholar 

  69. R.H. Lara, J. Vazquez-Arenas, G. Ramos-Sanchez, M. Galvan, and L. Lartundo-Rojas, J. Phys. Chem. C 119, 18364 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support by National Natural Science Foundation of China (No. U2002214). The authors also thank the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher learning (TP2019041), and the National Natural Science Foundation of China (No. 52022054) for financial support. We thank the Instrumental Analysis and Research Center of Shanghai University for materials characterization.

Author information

Authors and Affiliations

Authors

Contributions

CZ: Validation, data curation, writing - original draft. XH: investigation, formal analysis. YL: formal analysis. QX: conceptualization, writing - review & editing. XZ: conceptualization, supervision. HC: methodology. XL: methodology.

Corresponding author

Correspondence to Qian Xu.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 632 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Hu, X., Lei, Y. et al. Unraveling the Chloride Penetration Dissolution Mechanism of High-Grade Nickel Matte During Anodic Oxidation. JOM 74, 3775–3787 (2022). https://doi.org/10.1007/s11837-022-05319-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05319-8

Navigation