Skip to main content
Log in

A Comparative Study on Corrosion Behaviors of 15CrMo in Saline (Na2SO4) Gas Phase and Liquid Phase at 350°C

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The differences between the corrosion behaviors of 15CrMo in saline (Na2SO4) saturated steam and saline saturated water are clarified in this study. The corroded samples were analyzed by scanning electron microscope/energy dispersive spectrum (SEM/EDS), x-ray diffraction, and x-ray photoelectron spectroscopy. The results indicate that the destruction of cementite (Fe3C) could be intensified in the saline gas phase. In saline saturated steam (gas phase), the corroded surface is mainly covered by Fe3O4, which is in form of irregular particles. In addition,, dissolved SO in the steam (gas phase) is reduced to S2–. In the gas-phase corrosion of 15CrMo, insoluble sulfide occurs. In saturated saline water (liquid phase), smaller particles are distributed on the surface. The corrosion products in liquid-phase corrosion consists of Fe3O4, Fe2O3, and Fe. The surface of 15CrMo in the saturated saline gas phase is corroded more severely than in the liquid phase in the fixed conditions. The crystal Fe3O4 is well formed in the liquid/gas phases. The crystallinities of Fe3O4 are 99.50% (gas-phase corrosion) and 99.87% (liquid-phase corrosion).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. G. Lazorenko, A. Kasprzhitskii, and T. Nazdracheva, Constr. Build. Mater. 288, 123115. https://doi.org/10.1016/j.conbuildmat.2021.123115 (2021).

    Article  Google Scholar 

  2. B.A. Pint, Jom. 65(8), 1024. https://doi.org/10.1007/s11837-013-0642-z (2013).

    Article  Google Scholar 

  3. Y. Wang, H. Ma, Z. Liang, H. Chen, Q. Zhao, and X. Jin, Appl. Therm. Eng. 96, 76. https://doi.org/10.1016/j.applthermaleng.2015.10.151 (2015).

    Article  Google Scholar 

  4. J. Bang, Y. Kim, S. R. Kim, D. G. Shin, K. H. Cho, and W. Kwon. J. Korea. Soc. Waste. Manag. 34, 27-33. (2017. https://doi.org/10.9786/kswm.2017.34.1.27.

  5. Z. Li, F. Sun, Y. Shi, L. Fei, and M. Lei, Appl. Therm. Eng. 80, 355. https://doi.org/10.1016/j.applthermaleng.2015.02.003 (2015).

    Article  Google Scholar 

  6. G. Kaushal, H. Singh, and S. Prakash, Mater. High. Temp. 28(1), 1. https://doi.org/10.3184/096034011x12960473417949 (2014).

    Article  Google Scholar 

  7. L.Xu, Y. Huang, J. Wang, C. Liu, L. Liu, L. Zou, J. Yue, and K. Chen. Can. J. Chem. Eng. 98 (4).905-910. (2020). https://doi.org/10.1002/cjce.23677

  8. M.M. Kumar, K. Joshna, R. Markendeya, and M.S. Rawat, Int. J. Pres. Ves. Pip. 144, 45. https://doi.org/10.1016/j.ijpvp.2016.05.001 (2016).

    Article  Google Scholar 

  9. X. Xiong, X. Liu, H. Tan, and S. Deng. J. Energy. Inst. 93 (1), 377-386. (2020). https://doi.org/10.1016/j.joei.2019.02.003

  10. M. Mobin, A.U. Malik, I.N. Andijani, F. Al-Muaili, and M. Al-Hajri, Mater. Perform. 45(9), 44. (2006).

    Google Scholar 

  11. L. Ramezani, M. Mansouri, and M. Rahgoshay. Nucl. Technol. Radiat. Prot. 33 (4), 334-340. (2018). https://doi.org/10.2298/NTRP180606013R

  12. R. Viswanathan, J. Sarver, and J. M. Tanzosh. J. Mater. Eng. Perform. 15 (3), 255-274. (2006). https://doi.org/10.1361/105994906X108756

  13. D. Zheng, D. Che, and Y. Liu, Corros. Sci. 50(11), 3005. https://doi.org/10.1016/j.corsci.2008.08.006 (2008).

    Article  Google Scholar 

  14. V.P. Deodeshmukh, and B. A. Pint, Fireside Corrosion and Steamside Oxidation Behavior of HAYNES 282 Alloy for A-USC Applications[R]. 2016; 912-923. Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States).

  15. J. Lu, X. Wang, B. Shan, X. Li, and W. Wang. Chemosphere. 62 (2), 322-331. (2006). https://doi.org/10.1016/j.chemosphere.2005.04.033

  16. B. Dong, X. Ying, S. Jiang, and X. Dai, Desalination 372, 17. https://doi.org/10.1016/j.desal.2015.06.015 (2015).

    Article  Google Scholar 

  17. B.I. Onyeachu, E.E. Oguzie, I.C. Ukaga, D.I. Njoku, and X. Peng, Port. Electrochimica. Acta. 35(3), 127. https://doi.org/10.4152/pea.201703127 (2017).

    Article  Google Scholar 

  18. D. Zhang, X. Gao, L. Du, H. Wang, Z. Liu, N. Yang, and D.K. Misra, Acta. Metall. Sin-Engl. 32(5), 607. https://doi.org/10.1007/s40195-018-0825-2 (2019).

    Article  Google Scholar 

  19. B. Bai, G. Xiao, L. Deng, N. Zhang, C. Chen, Y. Bu, and D. Che, Corros. Sci. 181, 109240. https://doi.org/10.1016/j.corsci.2021.109240 (2021).

    Article  Google Scholar 

  20. Z. Gao, D. Zhang, S. Jiang, Q. Zhang, and X. Li, Corros. Sci. 139, 163. https://doi.org/10.1016/j.corsci.2018.04.030 (2018).

    Article  Google Scholar 

  21. W. Dec, K.M. Jaworska, and W. Simka, J. Michalska. Mater. Corros. 69(1), 53. https://doi.org/10.1002/maco.201709649 (2018).

    Article  Google Scholar 

  22. G.I. Ogundele, and W.E. White, Corros. 42(7), 398. https://doi.org/10.5006/1.3584920 (1986).

    Article  Google Scholar 

  23. Y. Zhu, X. Guo, and Y. Qiu, Corros. Eng. Sci. Techn. 45(6), 442. https://doi.org/10.1179/147842208X386322 (2010).

    Article  Google Scholar 

  24. H. Wang, P. Zhou, S. Huang, and C. Yu, Int. J. Electrochem. Sci. 11(2), 1293. (2016).

    Google Scholar 

  25. N. Du, W. Tian, Q. Zhao, and S. Chen, Acta. Metall. Sin. 48(7), 807. https://doi.org/10.3724/SP.J.1037.2012.00005 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Defu Che.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, B., Deng, L., Chen, J. et al. A Comparative Study on Corrosion Behaviors of 15CrMo in Saline (Na2SO4) Gas Phase and Liquid Phase at 350°C. JOM 74, 3540–3547 (2022). https://doi.org/10.1007/s11837-022-05313-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05313-0

Navigation