Skip to main content
Log in

The Effects of FeO and Fe2O3 on the Structure and Properties of Aluminosilicate System: A Molecular Dynamics Study

  • Recent Advances in Multicomponent Alloys and Ceramics
  • Published:
JOM Aims and scope Submit manuscript

Abstract

FeO and Fe2O3 represent similar but different effects on the structure and properties of aluminosilicate system. Molecular dynamics was conducted to clarify the influences of FeO and Fe2O3 on the structure and properties of SiO2-CaO-Al2O3-FeO (Fe2O3) systems. The bond length and coordination number (CNs) of Si-O bond are almost not affected by FeO (Fe2O3), but FeO and Fe2O3 have opposite effects on the CNs of Al-O bond. The more the Fe3+ ion is, the closer the CN is to 4. The ability of Fe3+ ions to reduce bridging oxygen (BO) is greater than that of Fe2+ ions, while non-bridging oxygen (NBO) and free oxygen (FO) show an opposite trend. In the same way, the influence of Fe atomic numbers of different valence on BO, NBO and FO is similar to that of FeO (Fe2O3) on BO, NBO and FO. The total diffusion coefficient and viscosity of the system increase with the addition of iron oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L.D. Bogomolove, J. Magn. Reson. 41, 422. (1980).

    Google Scholar 

  2. V. Kumar, O.P. Pandey, and K. Singh, Phys. B 405, 204. (2010).

    Article  Google Scholar 

  3. B. Li, Y. Du, X. Zhang, X. Jia, M. Zhao, and H. Chen, Trans. Indian Ceram. Soc. 72, 119. (2013).

    Article  Google Scholar 

  4. T. Wu, Q. Wang, C. Yu, and S. He, J. Non-Cryst. Solids 450, 23. (2016).

    Article  Google Scholar 

  5. Z. Wang, G. Wen, Q. Liu, S. Huang, P. Tang, and L. Yu, J. Non-Cryst. Solids 531, 119. (2020).

    Article  Google Scholar 

  6. L. Mongalo, A.S. Lopis, and G.A. Venter, J. Non-Cryst. Solids 452, 194. (2016).

    Article  Google Scholar 

  7. S. Sukenaga, T. Higo, H. Shibata, N. Saito, and K. Nakashima, ISIJ Int. 55, 1299. (2015).

    Article  Google Scholar 

  8. D.B. Dingwell, and D. Virgo, Ceochim. Cosmochim. Acta 52, 395. (1987).

    Article  Google Scholar 

  9. D.K. Belashchenko, and O.I. Ostrovski, Inorg. Mater. 38, 799. (2002).

    Article  Google Scholar 

  10. Y.S. Lee, D.J. Min, S.M. Jung, and S.H. Yi, ISIJ Int. 44, 1283. (2004).

    Article  Google Scholar 

  11. A. Karamanov, P. Pisciella, C. Cantalini, and M. Pelino, J. Am. Ceram. Soc. 83, 53. (2000).

    Article  Google Scholar 

  12. K. Tamura, and K. Kawamura, J. Phys. Chem. B 106, 271. (2002).

    Article  Google Scholar 

  13. X. Dai, J. Bai, D. Li, P. Yuan, T. Yan, L. Kong, and W. Li, J. Fuel Chem. Technol. 47, 641. (2019).

    Article  Google Scholar 

  14. K. Jiao, J. Zhang, Z. Wang, C. Chen, and Y. Liu, Steel Res. Int. 88, 1. (2017).

    Google Scholar 

  15. Q. Liu, and R.A. Lange, Am. Miner. 91, 385. (2006).

    Article  Google Scholar 

  16. Z. Wang, J. Zhang, B. Zhang, K. Jiao, and X. Li, China Metall. 26, 4. (2016)

    Google Scholar 

  17. A. Karamanov, G. Taglieri, and M. Pelino, J. Am. Ceram. Soc. 82, 12. (1999).

    Google Scholar 

  18. S. Xu, Z. Li, and Q. Lv, Ironmaking 26, 59. (2007).

    Google Scholar 

  19. J.R. Kim, Y.S. Lee, D.J. Min, S.M. Jung, and S.H. Yi, ISIJ Int. 44, 1291. (2004).

    Article  Google Scholar 

  20. Y.S. Lee, J.R. Kim, S.H. Yi, and D.J. Min, in VII International Conference on Molten Slags Fluxes and Salts. (2004), p. 225

  21. W. Shi, L. Kong, J. Bai, J. Xu, W. Li, Z. Bai, and W. Lia, Fuel Process. Technol. 181, 18. (2018).

    Article  Google Scholar 

  22. M. Matsui, Mineral. Mag. 58, 571. (1994).

    Article  Google Scholar 

  23. A. Miyake, Mineral. J. 20, 189. (1998).

    Article  Google Scholar 

  24. B. Guillot, and N. Sator, Geochim. Cosmochim. Acta 71, 1249. (2007).

    Article  Google Scholar 

  25. K. Shimoda, and K. Saito, ISIJ Int. 47, 1275. (2007).

    Article  Google Scholar 

  26. W. Xuan, H. Wang, and D. Xia, Fuel 242, 362. (2019).

    Article  Google Scholar 

  27. S. Ma, K. Li, J. Zhang, C. Jiang, M. Sun, H. Li, Z. Wang, and Z. Bi, JOM 73, 1637. (2021).

    Article  Google Scholar 

  28. S. Sukenaga, N. Saito, K. Kawakami, and K. Nakashima, ISIJ Int. 46, 352. (2006).

    Article  Google Scholar 

  29. K. Li, K. Rita, J. Zhang, B. Mohammed, M. Sun, B. Mansoor, Z. Liu, and S.C. Veer, Energy Fuels 31, 13466. (2017).

    Article  Google Scholar 

  30. C. Jiang, K. Li, J. Zhang, Z. Liu, L. Niu, W. Liang, M. Sun, H. Ma, and Z. Wang, Chem. Eng. Sci. 210, 115. (2019).

    Article  Google Scholar 

  31. S. Plimpton, J. Comput. Phys. 117, 1. (1995).

    Article  Google Scholar 

  32. A. Atila, M. Ghardi, S. Ouaskit, and A. Hasnaoui, Phys. Rev. B 100, 1. (2019).

    Article  Google Scholar 

  33. C. Jiang, K. Li, J. Zhang, Q. Qin, Z. Liu, W. Liang, M. Sun, and Z. Wang, Miner. Metals Mater. Soc. 50, 367. (2019).

    Google Scholar 

  34. C. Jiang, K. Li, J. Zhang, Q. Qin, Z. Liu, W. Liang, M. Sun, and Z. Wang, J. Mol. Liq. 268, 762. (2018).

    Article  Google Scholar 

  35. S. Le Roux, and V. Petkov, Appl. Crystallogr. 43, 181. (2010).

    Article  Google Scholar 

  36. L. Chris, G. Daniel, G. Leslie, P. Richard, B. Neil, C. Michael, H. Teresa, D. Jillian, Y. Hsing, C. Joseph, D.L. Jonathan, C. Jason, N. Scott, P. Jaime, K. Neil, and Z.R. Van, J. Phys. Conf. Ser. 256, 12. (2010).

    Google Scholar 

  37. P. Marcelo, V.Z. Ramses, N. Scott, G. Daniel, C. Joseph, E. Fatih, F. Alexey, G. Leslie, M. Fei, M. Bruno, N. Mike, P. Jaime, S. Marco, S. Vladimir, S. Erik, Y. ChingHsing, and P.W. Richard, Proc. Pract. Exp. Adv. Res. Comput. Rise Mach. 34, 1. (2019).

    Google Scholar 

  38. N. Jakse, M. Bouhadja, J. Kozaily, J.W.E. Drewitt, L. Hennet, D.R. Neuville, H.E. Fischer, V. Cristiglio, and A. Pasturel, Appl. Phys. Lett. 101, 1. (2012).

    Article  Google Scholar 

  39. L. Hennet, J.W. Drewitt, D.R. Neuville, V. Cristiglio, J. Kozaily, S. Brassamin, D. Zanghi, and H.E. Fischer, J. Non-Cryst. Solids 451, 89. (2016).

    Article  Google Scholar 

  40. L. Cormier, and D.R. Neuville, Chem. Geol. 213, 103. (2004).

    Article  Google Scholar 

  41. U. Hoppe, M. Karabulut, E. Metwalli, R.K. Brow, and P. Jóvári, J. Phys. Condens. Matter 15, 6143. (2003).

    Article  Google Scholar 

  42. S. Singh, and K. Singh, J. Non-Cryst. Solids 386, 100. (2014).

    Article  Google Scholar 

  43. Z. Tong, C. Xiao, and Z. Wei, Nonferr. Metals Sci. Eng. 7, 15. (2016).

    Google Scholar 

  44. K. Mills, and S. Sridhar, Ironmak. Steelmak. 26, 262. (1999).

    Article  Google Scholar 

  45. L. Wang, Y. Cui, J. Yang, C. Zhang, D. Cai, J. Zhang, Y. Sasaki, and O. Ostrovski, Steel Res. Int. 86, 670. (2015).

    Article  Google Scholar 

  46. W. Xuan, H. Wang, and D. Xia, Fuel Process. Technol. 187, 21. (2019).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the the National Natural Science Foundation of China (51974019, 51804025 and 51774032), the Chinese Fundamental Research Funds for the Central Universities (FRF-TP-20-005A2), the National Key Research and Development Program of China (2017YFB0304300&2017YFB0304303), and the financial support from the Young Elite Scientist Sponsorship Program by CAST (YESS20210090). Computations were performed on the Niagara supercomputer at the SciNet HPC Consortium in the Compute/Calcul Canada national computing platform. SciNet is funded by the Canada Foundation for Innovation under the auspices of Compute Canada, the Government of Ontario, Ontario Research Fund—Research Excellence, and the University of Toronto. The authors acknowledge the technical support of Prof. Mansoor Barati of the University of Toronto.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shan Ren or Kejiang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 512 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, S., Ren, S., Li, K. et al. The Effects of FeO and Fe2O3 on the Structure and Properties of Aluminosilicate System: A Molecular Dynamics Study. JOM 74, 4162–4173 (2022). https://doi.org/10.1007/s11837-022-05309-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05309-w

Navigation