Skip to main content
Log in

Evaluation of the Electrical Conductivity and Mechanical Properties of Cu–3Ti–1.5Ni–0.5Si Quaternary Alloy

  • Recent Advances in Multicomponent Alloys and Ceramics
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A high strength and super electrical conductive Cu–3Ti–1.5Ni–0.5Si quaternary alloy with improved hardness and ductility has been developed. The alloy components were melted in an inert gas controlled vacuum melting furnace, rapidly cooled in ice, homogenized at 900°C for 5 h, and age heat treated at an aging temperature of 480°C for 1, 2, 3, 4, and 5 h, respectively. The strength, hardness, ductility, and the electrical conductivity of the developed alloys were investigated and the microstructure analyzed using scanning electron microscopy (SEM). The average grain size and particle size distributions were obtained and discussed. Results show that the alloy recorded high strength and hardness of 760 MPa and 385 HV, respectively, after aging for 5 h. These improvements were linked with the minimal average grain size of ~4.5 µm and uniform particle size distribution. Excellent electrical conductivity and percentage elongation with maximum values of 37.4% IACS and 25.1%, respectively, were also recorded after 1 h. The studied Cu–3Ti–1.5Ti–0.5Si alloy demonstrated excellent combinations of ductility, strength, hardness, and electrical conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.C. Nnakwo, C.N. Mbah, and E.E. Nnuka, Heliyon. https://doi.org/10.1016/j.heliyon.2019.e02471 (2019).

    Article  Google Scholar 

  2. K.C. Nnakwo, C.N. Mbah, and S.N. Ude, J. King Saud Univ. Eng. Sci. 32(5), 287. (2020).

    Google Scholar 

  3. K.C. Nnakwo, C.N. Mbah, and C.C. Daniel-Mkpume, J. King Saud Univ. Sci. 31(4), 1056. (2019).

    Article  Google Scholar 

  4. K.C. Nnakwo, J. King Saud Univ. Sci. https://doi.org/10.1016/j.jksus.2017.12.002 (2019).

    Article  Google Scholar 

  5. M. Masamichi, and O. Yoshikiyo, Mater. Trans. JIM. 29(11), 903. (1988).

    Article  Google Scholar 

  6. X. Guoliang, W. Qiangsong, M. Xujun, X. Baiqing, and P. Lijun, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2012.08.007 (2012).

    Article  Google Scholar 

  7. S. Semboshi, Y. Kaneno, T. Takasugi, S.Z. Han, and N. Masahashi, Metall. Mater. Trans. A 50, 1389. (2019).

    Article  Google Scholar 

  8. S. Semboshi, Y. Kaneno, T. Takasugi, and N. Masahashi, Metall. Mater. Trans. A 49, 4956. (2018).

    Article  Google Scholar 

  9. S. Semboshi, S. Sato, M. Ishikuro, K. Wagatsuma, A. Iwase, and T. Takasugi, Metall. Mater. Trans. A 45, 3401. (2014).

    Article  Google Scholar 

  10. W.A. Soffa, and D.E. Laughlin, Redivivus. Prog. Mater. Sci. 49, 347. (2004).

    Article  Google Scholar 

  11. J. Liu, X. Wang, Q. Ran, G. Zhao, and X. Zhu, Trans. Non. Metall. Soc. China 26(12), 3183. (2016).

    Article  Google Scholar 

  12. D. Božić, O. Dimčić, B. Dimčić, I. Cvijović, and V. Rajkovi, Mater. Charact. 59, 1122. (2008).

    Article  Google Scholar 

  13. X. Wang, Z. Xiao, W. Qiu, Z. Li, and F. Liu, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2020.140510 (2021).

    Article  Google Scholar 

  14. S. Nagarjuna, K. Balasubramanian, and D.S. Sarma, J. Mater. Sci. 34(12), 2929. (1999).

    Article  Google Scholar 

  15. R. Markandeya, S. Nagarjuna, and D.S. Sarma, Mater. Sci. Eng. A 371(1–2), 291. (2004).

    Article  Google Scholar 

  16. K.C. Nnakwo, F.O. Osakwe, B.C. Ugwuanyi, P.A. Oghenekowho, I.U. Okeke, and E.A. Maduka, SN Appl. Sci. 3(11), 829. (2021).

    Article  Google Scholar 

  17. J. Liu, J. Liu, X. Wang, C. Fu, Y. Wang, L. Lu, and J. Zheng, Mater. Technol. 55(4), 483. (2021).

    Google Scholar 

  18. S. Suzuki, N. Shibutani, K. Mimura, M. Isshiki, and Y. Waseda, J. Alloy Compd. 417(1–2), 116. (2006).

    Article  Google Scholar 

  19. L. Jia, H. Xie, Z.L. Lu, X. Wang, and S.M. Wang, Mater. Sci. Technol. 28(2), 243. (2012).

    Article  Google Scholar 

  20. Z. Li, Z.Y. Pan, Y.Y. Zhao, Z. Xiao, and M.P. Wang, J. Mater. Res. 24(6), 2123. (2009).

    Article  Google Scholar 

  21. F. Huang, M. Jusheng, N. Honglong, C. YuWen, and G. Zhiting, Mater. Lett. 57, 2135. (2003).

    Article  Google Scholar 

  22. S. Puathawee, S. Rojananan, and S. Rojananan, Adv. Mater. Res. 802, 169. (2013).

    Article  Google Scholar 

  23. N. Xiong, R. Bao, J. Yi, D. Fang, J. Tao, and Y. Liu, J. Alloys Compd. 770, 204. (2019).

    Article  Google Scholar 

  24. S. Nagarjuna, K. Balasubramanian, and D.S. Sarma, J. Mater. Sci. 32(13), 3375. (1997).

    Article  Google Scholar 

  25. R. Knights, and P. Wilkes, Acta Metall. Mater. 21, 1503. (1973).

    Article  Google Scholar 

  26. S. Ramesh, H.N. Shivananda, K.R. Gopi, and S.S. Sahu, Mater. Res. Exp. https://doi.org/10.1088/2053-1591/aaf085 (2019).

    Article  Google Scholar 

  27. P. Zhang, Y. Li, Q. Lei, H. Tan, R. Shi, J. She, and Z. Li, J. Mater. Res. Technol. 9(2), 2299. (2020).

    Article  Google Scholar 

  28. Y.H. Yang, S.Y. Li, Z.S. Cui, Z. Li, Y.P. Li, and Q. Li, Rare Met. https://doi.org/10.1007/s12598-020-01699-5 (2021).

    Article  Google Scholar 

Download references

Acknowledgement

The authors appreciate the support of Notex Electronics Nig. Ltd, Cutix Cable Plc., and Unique Foundry towards the successful completion of this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. Nnakwo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nnakwo, K.C., Odo, J.U., Eweka, K.O. et al. Evaluation of the Electrical Conductivity and Mechanical Properties of Cu–3Ti–1.5Ni–0.5Si Quaternary Alloy. JOM 74, 4174–4180 (2022). https://doi.org/10.1007/s11837-022-05293-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05293-1

Navigation