Skip to main content
Log in

The Role of Hot Deformation Texture on Dynamic Transformation of Austenite to Ferrite in a 9%Cr Alloy Steel

  • New Frontiers in Physical Metallurgy of Steels
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The dynamic transformation of austenite to ferrite occurs in various steels and has technological implications for grain refinement. Despite significant research, ambiguities persist about the nature of this transformation, its driving force, and the influencing parameters. In the current work, these outstanding issues are addressed through a study of hot deformation textures associated with the dynamic transformation in a 9%Cr alloy steel. It is found that hot deformation textures of the parent and daughter phases contain crucial information about the nature of the transformation, and it is shown that the dynamic transformation is driven by stress rather than strain. Further, it bears signs of displacive rather than diffusional transformation and can be controlled through strain rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. R. Priestner, Strain induced γ→α transformation in the roll gap in carbon and microalloyed steel, ed. A.J. DeArdo, G.A. Ratz, P.J. Wray, (TMS-AIME, Warrendale PA, 1981) p. 455.

  2. H. Dong, X. Sun, Deformation Induced Ferrite Transformation, ed. U. Weng (Springer, Berlin, Heidelberg, 2009) p. 86.

  3. P.D. Hodgson, H. Beladi, Dynamic strain-induced transformation (DSIT) in steels, ed. E. Pereloma,D.V. Edmonds, (Woodhead, Cambridge, 2012), p. 527.

  4. C. Ghosh, V.V. Basabe, J.J. Jonas, Y.M. Kim, I.H. Jung, and S. Yue, Acta Mater. https://doi.org/10.1016/j.actamat.2013.01.006 (2013).

    Article  Google Scholar 

  5. H. Yada, C.M. Li, H. Yamagata, K. Tanaka, Dynamic γ to α transformation during hot deformation in low carbon steels, ed. T. Chandra, T. Sakai (Proc. Conf. Thermec ’97, Warrendale PA, 1997) p. 765

  6. B. Aashranth, G. Shankar, M.A. Davinci, D. Samantaray, U. Borah, and S. Suwas, J. Mater. Res. https://doi.org/10.1557/s43578-021-00141-5 (2021).

    Article  Google Scholar 

  7. Y. Matsumura and H. Yada, Trans. ISIJ Int. 27, 492. (1987).

    Article  Google Scholar 

  8. H. Yada, C.M. Li, and H. Yamagata, ISIJ Int. https://doi.org/10.2355/isijinternational.40.200 (2000).

    Article  Google Scholar 

  9. C. Aranas Jr. and J.J. Jonas, Acta. Mater. https://doi.org/10.1016/j.actamat.2014.08.060 (2015).

    Article  Google Scholar 

  10. P.J. Hurley, Production of Ultra-Fine Ferrite during Thermomechanical Processing of Steels, PhD Thesis, Monash University, Melbourne, Australia (1999).

  11. C.R. Das, S.K. Albert, J. Swaminathan, A.K. Bhaduri and B.S. Murty, Proc. Eng. Eng. https://doi.org/10.1016/j.proeng.2013.03.271 (2013).

    Article  Google Scholar 

  12. D. Samantaray, S. Mandal and A.K. Bhaduri, Mater. Des. https://doi.org/10.1016/j.matdes.2011.01.007 (2011).

    Article  Google Scholar 

  13. B. Beausir, J.J. Fundenberger, Analysis Tools for Electron and X-ray diffraction, ATEX - softwarewww.atex-software.eu, Université de Lorraine - Metz, 2017.

  14. C. Cayron, J. Appl. Crystallogr. https://doi.org/10.1107/S0021889807048777 (2007).

    Article  Google Scholar 

  15. E.I. Poliak and J.J. Jonas, Acta Mater. https://doi.org/10.1016/1359-6454(95)00146-7 (1996).

    Article  Google Scholar 

  16. E.I. Poliak and J.J. Jonas, ISIJ Int. https://doi.org/10.2355/isijinternational.43.692 (2003).

    Article  Google Scholar 

  17. H. Mirzadeh and A. Najafizadeh, ISIJ Int. https://doi.org/10.2355/isijinternational.53.680 (2013).

    Article  Google Scholar 

  18. C. Ghosh, C. Aranas Jr., and J.J. Jonas, Prog. Mater. Sci. https://doi.org/10.1016/j.pmatsci.2016.04.004 (2016).

    Article  Google Scholar 

  19. S. Morito, H. Tanaka, R. Konishi, T. Furuhara, and T. Maki, Acta Mater. https://doi.org/10.1016/S1359-6454(02)00577-3 (2003).

    Article  Google Scholar 

  20. L.A.I. Kestens and H. Pirgazi, Mater. Sci. Technol. https://doi.org/10.1080/02670836.2016.1231746 (2016).

    Article  Google Scholar 

  21. H. Hu, Texture 1, 233. (1974).

    Article  Google Scholar 

  22. F. Barcelo, J.-L. Bechade, and B. Fournier, Phase Transit. https://doi.org/10.1080/01411594.2010.502054 (2010).

    Article  Google Scholar 

  23. S.K. Giri, A. Durgaprasad, K.V. Manikrishna, C.R. Anoop, S. Kundu, and I. Samajdar, Philos. Mag. https://doi.org/10.1080/14786435.2018.1552030 (2018).

    Article  Google Scholar 

  24. K. Koumatos and A. Muehlemann, Acta Crystallogr. A. https://doi.org/10.1107/S2053273316020350 (2017).

    Article  Google Scholar 

  25. H.K.D.H. Bhadeshia, H. Abreu, and S. Kundu, Int. J. Mater. Res. https://doi.org/10.3139/146.101645 (2008).

    Article  Google Scholar 

  26. H. Landheer, S.E. Offerman, R.H. Petrov, and L.A.I. Kestens, Acta Mater. https://doi.org/10.1016/j.actamat.2008.11.034 (2009).

    Article  Google Scholar 

  27. H.-R. Wenk, I. Huensche, and L. Kestens, Metall. Mater. Trans. A. https://doi.org/10.1007/s11661-006-9033-1 (2007).

    Article  Google Scholar 

  28. H. Landheer, S. E. Offerman, L. A. I. Kestens, T. Takeuchi, M. Enonioto, and Y. Adachi, The effect of grain and phase boundary misorientation on nucleation during solid-state phase transformations in a Co-15Fe alloy, ed. A. D. Rollett (Am. Ceram., Society, Hoboken NJ, 2008)

  29. C. Cayron, Acta Crystallogr. A. https://doi.org/10.1107/S010876730503686X (2007).

    Article  Google Scholar 

  30. A. Eres-Castellanos, C. Garcia-Mateo, and F.G. Caballero, Metals. https://doi.org/10.3390/met1102029 (2021).

    Article  Google Scholar 

  31. J.R. Patel and M. Cohen, Acta Metall. 1, 531. (1953).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from Indira Gandhi Centre for Atomic Research, Kalpakkam, Department of Atomic Energy, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyam Suwas.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest for this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aashranth, B., Shankar, G., Samantaray, D. et al. The Role of Hot Deformation Texture on Dynamic Transformation of Austenite to Ferrite in a 9%Cr Alloy Steel. JOM 74, 2377–2385 (2022). https://doi.org/10.1007/s11837-022-05279-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05279-z

Navigation