Skip to main content
Log in

Evolution of Precipitate Phases in Ferritic and Martensitic Steel P92 During Normalizing and Tempering

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Ferritic/martensitic steel P92 is being considered for applications as fuel cladding and duct structures for sodium-cooled fast reactors. The precipitate phases in the P92 steel normalized for 0.5 h at 1323 K (1050°C) and tempered for 1 h at temperatures ranging from 573K to 1038 K (300°C to 765°C) were qualitatively analyzed through energy dispersive x-ray analysis and electron diffraction. In the normalized condition, Fe-rich M3C and Fe-rich M2C with a simple orthorhombic lattice coexisted in the steel. Fe-rich M7C3 and Fe-rich M2C with a simple monoclinic lattice were identified in the steel tempered at 573 K (300°C). Only Fe-rich carbides were detected in the steel tempered at both 773 K and 873 K (500°C and 600°C). Cr-rich M3C2 and W-rich M2C were identified in the steel tempered at 923 K (650°C). Cr-rich M2X, Cr-rich M23C6 and V-rich MX were observed in the steel tempered at 973 K (700°C). Sigma-FeCr phase was only detected in the steel tempered at 1038 K (765°C). The sequence of phase precipitation during the normalizing and tempering of the steel was proposed. The possible change of precipitate phases in the steel under irradiation at different reactor operating temperatures has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Abram and S. Ion, Energy Policy 36, 4323. (2008).

    Article  Google Scholar 

  2. K.L. Murty and I. Charit, J. Nucl. Mater. 383, 189. (2008).

    Article  Google Scholar 

  3. D. Rojas, J. Garcia, O. Prat, G. Sauthoff, and A.R. Kaysser-Pyzalla, Mater. Sci. Eng. A 528, 5164. (2011).

    Article  Google Scholar 

  4. Cabet, F. Dalle, E. Gaganidze, J. Henry, and H. Tanigawa, J. Nucl. Mater. 523, 510. (2019).

    Article  Google Scholar 

  5. American Society for Testing of Materials, ASTM Standard A335.

  6. C. Topbasi, A.T. Motta, and M.A. Kirk, J. Nucl. Mater. 425, 48. (2012).

    Article  Google Scholar 

  7. P. Yvon and F. Carré, J. Nucl. Mater. 385, 217. (2009).

    Article  Google Scholar 

  8. R.L. Klueh, and A.T. Nelson, J. Nucl. Mater. 371, 37. (2007).

    Article  Google Scholar 

  9. R.L. Klueh, D.R. Harries, High-Chromium Ferritic and Martensitic Steels for Nuclear Applications, West Conshohocken, PA, ASTM, 103 (2001)

  10. F. Abe, Sci. Technol. Adv. Mater. 9, 013002. (2008).

    Article  Google Scholar 

  11. J. Hald and Z. Kuboň, in Microstructural Development and Stability in High Chromium Ferritic Power Plant Steels. ed. by A. Strang, and D.J. Gooch (The Institute of Materials, London, 1997), p. 159.

    Google Scholar 

  12. J.M. Vitek and R.L. Klueh, Metall. Trans. A 14, 1047. (1983).

    Article  Google Scholar 

  13. W.B. Jones, C.R. Hills, and D.H. Polonis, Metall. Trans. A 22, 1049. (1991).

    Article  Google Scholar 

  14. J. Janovec, M. Svoboda, and J. Blach, Mater. Sci. Eng. A 249, 184. (1998).

    Article  Google Scholar 

  15. K. Yamada, M. Igarashi, S. Muneki, and F. Abe, ISIJ Int. 42, 779. (2002).

    Article  Google Scholar 

  16. K. Maile, Int. J. Pres. Ves. Pip. 84, 62. (2007).

    Article  Google Scholar 

  17. J. Hald, Int. J. Pres. Ves. Pip. 85, 30. (2008).

    Article  Google Scholar 

  18. Y.Z. Shen, S.H. Kim, H.D. Cho, C.H. Han, and W.S. Ryu, J. Nucl. Mater. 400, 94. (2010).

    Article  Google Scholar 

  19. Y.Z. Shen, B. Ji, X.L. Zhou, and J. Zhu, Metall. Mater. Trans. A 45, 2950. (2014).

    Article  Google Scholar 

  20. Y.Z. Shen, H. Liu, Z.X. Shang, and Z.Q. Xu, J. Nucl. Mater. 465, 373. (2015).

    Article  Google Scholar 

  21. Y.Z. Shen, X.L. Zhou, Z.X. Shang, B. Ji, and J.R. Lu, Metall. Mater. Trans. A 47, 6. (2016).

    Article  Google Scholar 

  22. R.C. Thomson and H.K.D.H. Bhadeshia, Metall. Trans. A 23, 1171. (1992).

    Article  Google Scholar 

  23. Y.Z. Shen, X.L. Zhou, T.T. Shi, X. Huang, Z.X. Shang, W.W. Liu, B. Ji, and Z.Q. Xu, Mater. Charact. 122, 113. (2016).

    Article  Google Scholar 

  24. Y.Z. Shen, S.H. Kim, H.D. Cho, C.H. Han, and W.S. Ryu, J. Nucl. Mater. 430, 264. (2012).

    Article  Google Scholar 

  25. F. Abe, Int. J. Mater. Res. 99, 387. (2008).

    Article  Google Scholar 

  26. F. Abe, J. Pres. Ves. Technol. 138, 040804. (2016).

    Article  Google Scholar 

  27. X.L. Zhou, Z.Q. Xu, Y.Z. Shen, T.T. Shi, and X. Huang, ISIJ Int. 58, 1467. (2018).

    Article  Google Scholar 

  28. N. Dudova and R. Kaibyshev, ISIJ Int. 51, 826. (2011).

    Article  Google Scholar 

  29. Z.Q. Xu and Y.Z. Shen, Metall. Mater. Trans. A 48, 3486. (2018).

    Article  Google Scholar 

  30. I. Fedorova, A. Kostka, E. Tkachev, A. Belyakov, and R. Kaibyshev, Mater. Sci. Eng. A 662, 443. (2016).

    Article  Google Scholar 

  31. X.G. Tao, L.Z. Han, and J.F. Gu, Mater. Sci. Eng. A 618, 189. (2014).

    Article  Google Scholar 

  32. C. Hurtado-Noreña, A. Danón, M.I. Luppo, and P. Bruzzoni, Metall. Mater. Trans. A 46, 3972. (2015).

    Article  Google Scholar 

  33. H. Djebaili, H. Zedira, A. Djelloul, and A. Boumaza, Mater. Charact. 60, 946. (2009).

    Article  Google Scholar 

  34. M. Manes, A.D. Damick, M. Mentser, E.M. Cohn, and L.J.E. Hofer, J. Am. Chem. Soc. 74, 6207. (1952).

    Article  Google Scholar 

  35. G.J. Cai, H.O. Andrén, and F.L.E. Svensson, Mater. Sci. Eng. A 242, 202. (1998).

    Article  Google Scholar 

  36. N. Bandyopadhyay, C.L. Briant, and E.L. Hall, Metall. Trans. A 16, 721. (1985).

    Article  Google Scholar 

  37. A.Y. Kipelova, A.N. Belyakov, V.N. Skorobogatykh, I.A. Shchenkova, and R.O. Kaibyshev, Met. Sci. Heat Treat. 52, 100. (2010).

    Article  Google Scholar 

  38. A. Mandal and T.K. Bandyopadhay, Mater. Sci. Eng. A 620, 463. (2015).

    Article  Google Scholar 

  39. A.K. Metya, M. Ghosh, N. Parida, and K. Balasubramaniam, Mater. Charact. 107, 14. (2015).

    Article  Google Scholar 

  40. S.H. Kim, C.H. Han, and W.S. Ryu, Solid State Phenom. 135, 107. (2008).

    Article  Google Scholar 

  41. Y.Z. Shen, S.H. Kim, H.D. Cho, C.H. Han, and W.S. Ryu, Nucl. Eng. Des. 239, 648. (2009).

    Article  Google Scholar 

  42. P.J. Ennis, A. Zielinska-Lipiec, O. Wachter, and A. Czyrska-Filemonowicz, Acta Mater. 45, 4901. (1997).

    Article  Google Scholar 

  43. J. Hald and L. Korcakova, ISIJ Int. 43, 420. (2003).

    Article  Google Scholar 

  44. A. Zielinska-Lipiec, A. Czyrska-Filemonowicz, P.J. Ennis, and O. Wachter, J. Mater. Process. Technol. 64, 397. (1997).

    Article  Google Scholar 

  45. G.R. Speich and W.C. Leslie, Metall. Trans. 3, 1043. (1972).

    Article  Google Scholar 

  46. D.J. Gooch, Met. Sci. 16, 79. (1982).

    Article  Google Scholar 

  47. Y. Hirotsu and S. Nagakura, Acta Metall. 20, 645. (1972).

    Article  Google Scholar 

  48. Y. Hirotsu3 and S. Nagakura, Trans. Jpn. Inst. Met. 15, 129. (1974).

    Article  Google Scholar 

  49. R.L. Klueh, D.R. Harries, High-Chromium ferritic and martensitic steels for nuclear applications, West Conshohocken, PA, ASTM, 34 (2001)

  50. F.B. Pickering, Historical development and microstructure of high Chromium ferritic steels for high temperature application, ed. By A. Strang, D.J. Gooch, in Microstructural Development and Stability in High Chromium Ferritic Power Plant Steels (The Institute of Materials, London, 1997), p. 1

  51. H.L. Cheng, W.L. Song, Y.Z. Shen, X. Huang, Z.Q. Xu, Q.S. Li, Z.X. Shang, and Z.B. Yang, J. Nucl. Mater. 498, 314. (2018).

    Article  Google Scholar 

  52. A. Strang, V. Vodárek, Precipitation processes in martensitic 12CrMoVNb steels during high temperature Creep, ed. By A. Strang, D.J. Gooch, in Microstructural Development and Stability in High Chromium Ferritic Power Plant Steels (The Institute of Materials, London, 1997), p. 31.

  53. F. Abe, M. Taneike, and K. Sawada, Int. J. Pressure Vessels and Piping 84, 3–12. (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Key Program of National Natural Science Foundation of China (51034011) and ITER-National Magnetic Confinement Fusion Program of the Department of Science and Technology of China (2011GB113001). The authors thank Prof. Aidang Shan from Shanghai Jiao Tong University for supplying the experimental steel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Zhong Shen.

Ethics declarations

Conflict of interest

There are no conflicts of interest for any authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Z.J., Shen, Y.Z., Xu, Z.Q. et al. Evolution of Precipitate Phases in Ferritic and Martensitic Steel P92 During Normalizing and Tempering. JOM 74, 3578–3594 (2022). https://doi.org/10.1007/s11837-022-05272-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05272-6

Navigation