Skip to main content
Log in

Feature Extraction and Microstructural Classification of Hot Stamping Ultra-High Strength Steel by Machine Learning

  • Machine Learning and New Paradigms in Computational Materials Research
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Microstructural analysis and classification are important to understand the microstructure-property relationship of ultrahigh strength steel. Handling this manually takes time, and it requires years of training to reduce the number of errors. Automatic microstructure recognition is driven by machine learning and depends heavily on feature extraction from images at different phases. This paper compared two feature extraction methods, the gray-level cooccurrence matrix (GLCM) and convolutional neural networks (CNNs), to extract the features of different microstructures. The methods were applied to a database of etched and scanned electron microscopy (SEM)-imaged microstructures of ultrahigh strength steel. Driven by metallographic knowledge, each characteristic parameter of the GLCM was analyzed. Then, the t-distributed stochastic neighbor embedding (t-SNE) method was used to compare the two high-dimensional features, and the results showed that feature clustering of the CNN method was better than the GLCM. Subsequently, the features of microstructures were classified by machine learning (ML), and the results showed that the features from CNNs had a better recognition accuracy (98.50%) than those from support vector machine (SVM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Zhu, W.K. Liang, and Z.X. Gui, J. Metall. Mater. Trans. A 48, 1375–1382. https://doi.org/10.1007/s11661-016-3884-x (2017).

    Article  Google Scholar 

  2. H. Karbasian and A.E. Tekkaya, J. Mater. Process. Technol. 210, 2103–2118. https://doi.org/10.1016/j.jmatprotec.2010.07.019 (2010).

    Article  Google Scholar 

  3. M. Merklein, M. Wieland, and M. Lechner, J. Mater. Process. Technol. 228, 11–24. https://doi.org/10.1016/j.jmatprotec.2015.09.023 (2016).

    Article  Google Scholar 

  4. Y. Mu, B. Wang, and J. Zhou, J. Metall. Mater. Trans. A 48, 5467–5479. https://doi.org/10.1007/s11661-017-4270-z (2017).

    Article  Google Scholar 

  5. B. Zhu, J. Zhu, and Y. Wan, J. Mater. Process. Tech. 262, 392–402. https://doi.org/10.1016/j.jmatprotec.2018.07.011 (2018).

    Article  Google Scholar 

  6. A. Chowdhury, E. Kautz, and B. Yener, Comp. Mater. Sci. 123, 176–187. https://doi.org/10.1016/j.commatsci.2016.05.034 (2016).

    Article  Google Scholar 

  7. S.M. Azimi, D. Britz, and M. Engstler, Sci. Rep-UK 8, 2128. https://doi.org/10.1038/s41598-018-20037-5 (2018).

    Article  Google Scholar 

  8. T. Dutta, D. Das, and S. Banerjee, Measurement 137, 595–603. https://doi.org/10.1016/j.measurement.2018.12.106 (2019).

    Article  Google Scholar 

  9. K. Tsutsui, H. Terasaki, and T. Maemura, Comp. Mater. Sci. 159, 403–411. https://doi.org/10.1016/j.commatsci.2018.12.003 (2019).

    Article  Google Scholar 

  10. J. Gola, D. Britz, and T. Staudt, Comp. Mater. Sci. 148, 324–335. https://doi.org/10.1016/j.commatsci.2018.03.004 (2018).

    Article  Google Scholar 

  11. S. Dutta, K. Barat, and A. Das, Measurement 47, 130–144. https://doi.org/10.1016/j.measurement.2013.08.030 (2014).

    Article  Google Scholar 

  12. B.L. Decost and E.A. Holm, Data Brief 9, 727–731. https://doi.org/10.1016/j.dib.2016.10.011 (2016).

    Article  Google Scholar 

  13. M K F Jr, W G Wee: IEEE 1991 International Conference on Systems Engineering. Dayton, OH, USA, 1991. https://doi.org/10.1109/ICSYSE.1991.161149

  14. A Gebejes, R Huertas, A Tremeau: Color and Imaging Conference, 24th Color and Imaging Conference, 2016, pp. 271-277. https://doi.org/10.2352/ISSN.2169-2629.2017.32.271

  15. T Kobayashi: International Conference on Computer Analysis of Images and Patterns 2015, pp. 594-605. https://doi.org/10.1109/ICSYSE.1991.161149

  16. M. Adankon and M. Cheriet, J. Comput. Sci. 1, 1–28. https://doi.org/10.1007/978-3-642-27733-7_299-3 (2002).

    Article  Google Scholar 

  17. V. Svetnik, J. Chem. Inf. Comput. Sci 43, 133–146. https://doi.org/10.1021/ci034160g (2003).

    Article  Google Scholar 

  18. U. Maulik and S. Bandyopadhyay, J. Pattern Recogn. 33, 1455–1465. https://doi.org/10.1016/S0031-3203(99)00137-5 (2000).

    Article  Google Scholar 

  19. J.P. Yun, S. Choi, and J. Kim, J. NDT E International 42, 389–397. https://doi.org/10.1016/j.ndteint.2009.01.007 (2009).

    Article  Google Scholar 

  20. P. Brynolfsson, D. Nilsson, and T. Torheim, J. Sci Rep 7, 4041. https://doi.org/10.1038/s41598-017-04151-4 (2017).

    Article  Google Scholar 

  21. J. Webel, J. Gola, and D. Britz, J. Mater. Charact. 144, 584–596. https://doi.org/10.1016/j.matchar.2018.08.009 (2018).

    Article  Google Scholar 

  22. J. Gola, D. Britz, and T. Staudt, J. Comput. Mater. Sci. 148, 324–335. https://doi.org/10.1016/j.commatsci.2018.03.004 (2018).

    Article  Google Scholar 

  23. B.L. DeCost and E.A. Holm, J. Comput. Mater. Sci. 110, 126–133. https://doi.org/10.1016/j.commatsci.2015.08.011 (2015).

    Article  Google Scholar 

  24. J Masci, U Meier, D Ciresan: The 2012 International Joint Conference on Neural Networks, 2012, Brisbane, QLD, Australia. https://doi.org/10.1109/IJCNN.2012.6252468

  25. S.M. Azimi, D. Britz, and M. Engstler, J. Sci Rep 8, 2128. https://doi.org/10.1038/s41598-018-20037-5 (2017).

    Article  Google Scholar 

  26. B.L. DeCost, T. Francis, and E.A. Holm, J. Acta Mater. 133, 30–40. https://doi.org/10.1016/j.actamat.2017.05.014 (2017).

    Article  Google Scholar 

  27. N. Lubbers, T. Lookman, and K. Barros, J. Phys. Rev. 96, 052. https://doi.org/10.1103/PhysRevE.96.052111 (2017).

    Article  Google Scholar 

  28. A. Abdollahpoor, X. Chen, and M.P. Pereira, J. Mater. Process. Technol. 228, 125–136. https://doi.org/10.1016/j.jmatprotec.2014.11.033 (2016).

    Article  Google Scholar 

  29. X. Liu: Microstructural characterization of pearlitic and complex phase steels using image analysis methods, University of Birmingham, 2014. http://etheses.bham.ac.uk/id/eprint/4842

  30. R.M.S.K. Haralick, J. IEEE Trans. Syst. Man Cyber. 3, 610–621. https://doi.org/10.1109/TSMC.1973.4309314 (1973).

    Article  MathSciNet  Google Scholar 

  31. C. Kavitha, M.B. Rao, and B.P. Rao, Inter. J. Comp. Sci. Inform. Technol. https://doi.org/10.1093/comjnl/bxq066 (2011).

    Article  Google Scholar 

  32. H. Goh, N. Thome, and M. Cord, J. IEEE Trans. Neur. Networks Learn Syst. 25, 2212–2225. https://doi.org/10.1109/TNNLS.2014.2307532 (2017).

    Article  Google Scholar 

  33. K. Gopalakrishnan, S.K. Khaitan and A. Choudhary, Constr. Build. Mater. 157, 322–330. https://doi.org/10.1016/j.conbuildmat.2017.09.110 (2017).

    Article  Google Scholar 

  34. K Simonyan, A Zisserman: J. Comput. Sci., 2014. https://arxiv.org/abs/1409.1556

  35. V D M Laurens, G Hinton: J. Mach. Learn. Res. h, 2008, vlol.9, pp. 2579-2605. http://www.cs.toronto.edu/~hinton/absps/tsne.pdf

Download references

Acknowledgements

This research work was financially supported by the National Natural Science Foundation of China (Grant No. U1760205) and the National Science and Technology Major Project of China (Grant No. 2018ZX04023001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Wang.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with people or organizations that would inappropriately influence our work, and there is no professional or other personal interest of any nature in any product, service, and/or company that could influence either the position presented in or the review of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, B., Chen, Z., Hu, F. et al. Feature Extraction and Microstructural Classification of Hot Stamping Ultra-High Strength Steel by Machine Learning. JOM 74, 3466–3477 (2022). https://doi.org/10.1007/s11837-022-05265-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05265-5

Navigation